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Abstract—In recent years, quantitative verification concerning
network availability has received increasing attention due to its
practical importance in network management. Existing work
extends upon qualitative verification and tries to answer whether
a network would have any link overload under failures and
dynamic traffic. The simple yes-or-no question falls short of
accurately characterizing the robustness of a network under
uncertainties, which the operators are in dire need of. Thus, we
argue that it is necessary to design a probabilistic framework
to analyze network availability comprehensively. We propose
Pita, a novel network analysis framework that outputs the
overall probability of the network being unavailable under a
range of failure scenarios and traffic demands. We formalize
the problem and show that it is #P-hard which does not admit
deterministic approximation solutions. We further develop an
improved randomized approximation that exploits the structural
property of our problem to reduce the computational cost of
the so-called boundary oracle procedure, a key bottleneck of the
approximation, without any accuracy loss. Evaluation with real
topologies shows that Pita provides up to 2.25x speedup over
state-of-the-art solutions, and can be effectively used in many
network management tasks such as identifying high-risk failure
scenarios, and aiding robust traffic engineering design.

I. INTRODUCTION

Internet-scale services ranging from search, advertisement,
and social networks require stringent performance and avail-
ability guarantees from the underlying networks. Yet managing
a network at scale is inherently difficult, especially under un-
certainties such as failures and dynamic traffic. In this regard,
various verification tools have been developed to verify that
certain important properties can be guaranteed in the network.
Most of them focus on verifying qualitative properties that are
path-related [4], [15], [25], [32], e.g., reachability [32], path
isolation (two paths do not share any links) [25], waypointing
(traffic traverses a chain of services) [4], etc.

Very recently, quantitative verification has started to gain
attention due to their imminent practical values. This line of
work concentrates on the issue of network availability under
failures where traffic is re-routed to other links, and with dy-
namic traffic. For example, given the range of traffic fluctuation,
QARC [42] tells the operators if the network is guaranteed
congestion-free or overload-free which reflects network avail-
ability. Using the same problem setup, Chang et al. [7] calculate
the maximum link utilization to reflect how severe the overload
is if any.

We observe that simple yes or no answers in these work
are useful but still far from accurately and comprehensively
characterizing network availability under dynamics, which the
operators are in dire need of. Take Fig. 1 as an example. When
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Fig. 1: An example of profiling the traffic load under a failure and dynamic
traffic. When AD fails, BE could be overloaded under both fluctuation ranges
of demand 2 but with different probabilities (0.5 and 1, respectively).
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Fig. 2: If demand 2’s range is [8, 12], the probability of BE being overload-
free after a failure is 0.5, which is obtained by computing the volume of a
convex polygon (2-dimensional polytope).

link AD fails, demand 1’s traffic on tunnel A-D-E is re-routed
to the remaining tunnel A-B-E. Assuming the tunnel splitting
weights of the two demands are both 1:1, demand 2’s traffic on
link BE varies between 4 to 6, and demand 1’s traffic is also 4
to 6. In this case, existing solutions determine that the network
is not overload-free since it is possible for the overall traffic to
exceed BE’s capacity. This analysis is not accurate since it is
also entirely possible (with probability 0.5 as shown in Fig. 2)
for BE to be not overloaded. If demand 2’s range is changed to
[12, 16] (demand 2’s traffic on link BE is 6 to 8), BE is still not
overload-free in existing solutions, but in fact it is overloaded
in all cases with probability one, and BE availability vanishes
to zero in this scenario.

Thus, we argue that verification ought to give quantitative re-
sults to accurately outline network availability, that is, to answer
the question “how likely is the network going to be overload-
free”, in addition to the question of whether the network can be
guaranteed overload-free. This can be useful for many network
management tasks, such as network design and planning, traffic



engineering, failover mechanism design, etc. A probabilistic
framework naturally fits here to capture the dynamic traffic
demands, and their interactions due to failures and re-routing.

It is quite challenging to probabilistically characterize net-
work availability. Consider a much simplified problem of com-
puting the probability of a single link being overload-free given
the specific failures, re-routing scheme, and demand ranges.
As each demand is continuous, this is equivalent to computing
a Lebesgue integration of a measurable set, or geometrically,
computing the volume of a polytope defined by the ranges of
re-routed demands on this link, and the constraint that total
traffic does not exceed link capacity. As the number of demands
(i.e. dimensions of the polytope) is large, this problem can be
shown to be #P-hard which does not admit deterministic ap-
proximation solutions (see §III for details). The probability of
the network being overload-free is clearly even more difficult,
because links are not independent of each other for the overload
event due to routing.

As a result, we resort to randomized approximation to obtain
the network overload-free probability under a given failure
scenario. Specifically, we resort to Multiphase Markov Chain
Monte Carlo (MCMC), a common framework for approximat-
ing the volume of high-dimensional convex bodies [10], [11],
[24], [31]. On a high level, it works by defining a sequence of
convex bodies such that multiplying the ratios of the volume of
two consecutive bodies yields the volume of our target body,
which effectively captures all the cases of the network being
overload-free after failure. Each volume ratio is then estimated
by MCMC using a random walk algorithm to sample points.

The challenge here is that this approach has prohibitively
high computational cost even with state-of-the-art solutions
[31], especially considering that a WAN has many demands in
general. The main bottleneck is the so-called boundary oracle
procedure which checks if a point generated by random walk is
inside the convex body or not. Thus we design an optimization
to substantially reduce the complexity of boundary oracle that
does not need any assumptions on network topology, traffic
engineering, or failures. Our key insight is that the polytope
that geometrically represents our problem constraints, although
irregular such that we have to resort to a general Multiphase
MCMC, has many special hyperplanes that provide the op-
portunity to optimize the general algorithm. Specifically, the
hyperplanes representing the demand ranges are parallel to the
possible random walk directions (axes), which implies they can
be safely bypassed in the boundary oracle checking. We further
show that a substantial number of constraints or hyperplanes
satisfy this property, making it possible to reduce the overall
cost of this procedure.

Based on the improved boundary oracle, we propose a new
probabilistic analysis framework which we call Pita. We per-
form realistic evaluations of Pita using real WAN topologies,
traffic engineering schemes, and failover mechanism. The re-
sults show that Pita is up to 2.25x faster than existing solutions,
and the speedup is more salient as the network scales up. We
further demonstrate that with Pita, operators can quantitatively
identify the high-risk failure scenarios, and can aid the TE

selection in terms of the resulting network availability.
We make the following contributions.

• We identify probabilistic verification of a traffic-related prop-
erty, namely availability, as a new and important area of
verification research with imminent practical value.

• We propose a new probabilistic analysis framework, Pita,
as the first step towards quantitative verification of network
availability. We systematically attack the problem, by first
showing its theoretical #P-hardness, then adopting the clas-
sical Multiphase MCMC for randomized approximation. We
further design an improved boundary oracle procedure to
reduce the computational cost.

• We present realistic evaluations of Pita to show its effective-
ness and potential applications in network management.

II. RELATED WORK AND MOTIVATION

In this section, we first present related work on traffic man-
agement and show that though taken seriously in the literature,
availability is still impossible to guarantee in practice for many
reasons. This motivates us to seek to more precisely character-
ize availability through network analysis. We then introduce a
simple taxonomy of existing verification work and position our
probabilistic analysis of availability in contrast to them. Finally,
we present a few usecases to demonstrate how operators may
find our tool useful for network management.

A. Traffic Management Cannot Guarantee Availability

Before failures. WANs apply centralized traffic engineering
(TE) to split the aggregated traffic of a pair of source and
destination across multiple pre-established tunnels [20], [28],
[43]. However, failures in both control and data plane are com-
mon in production WANs [17], [35], and can degrade network
availability with link overload. Thus, a line of work represented
by FFC [28] proposes to proactively handle failures in the
TE formulation. The basic idea is to reserve some bandwidth
headroom at each link so that even with failures, overload and
congestion would be minimized when traffic still follows the
original TE plan. This trades efficiency for availability as part
of the expensive WAN bandwidth has to be left idle most of the
time [44], and to better guarantee availability more bandwidth
needs to be set aside which is undesirable [20], [23], [38].

After failures. In addition to TE, failover mechanisms are
employed to rapidly redirect traffic away from the failed links.
There are two common approaches. One is local rescaling with
ECMP [22], the default load balancing scheme in data plane.
Upon detecting a failure, ingress switches remove the tunnels
using the failed links and re-distribute the affected traffic among
the remaining tunnels (of the same source-destination pair)
according to the original splitting ratios. This restores connec-
tivity swiftly, but links may be overloaded since the original
TE plan is not optimized for the new topology.

The other mechanism is to use pre-computed backup tunnels
once failures occur [21], [44]. Backup tunnels are computed
in addition to the regular TE to ensure victim traffic can be
maximally re-distributed without causing congestion to the re-
maining tunnels. They are installed in the switch flow tables in



advance and activated upon detecting a corresponding failure.
Compared to local rescaling, backup tunnels recover traffic
more effectively. However, the fact that only a small number
of forwarding rules are supported in commodity switches con-
strains the deployment of this approach [44].

To quickly recap, TE solutions improve network availability
but cannot guarantee it due to the exponentially many failure
cases to consider and the extremely high resource requirements
(bandwidth, flow table entries) to bear. In this sense, it becomes
imperative to instead quantitatively characterize availability in
face of failures and traffic dynamics for operators to make their
tradeoffs, for which formal analysis is the primary means.

B. Existing Verification is Insufficient

Can S reach T as long as at 
most two link failures?
How likely path from S to T traverses a firewall under failures?

Can a network accommodate input dynamic 
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Deterministic

Probabilistic

HSA [25]

QARC [43]

NetDice [42]
This work

Batfish [15]

Chang et al. [9]

ProbNetKAT [41]

Path-related Traffic-related

Fig. 3: Pita compared to existing work on verification. We also show the
verification questions each work aims to answer.

A rich literature exists on network verification. We categorize
the most related work to ours on two dimensions, the target
properties, and the analysis approach as depicted in Fig. 3.
Verification has been focusing on path-related properties such
as reachability and waypointing that depend on topological
information and switch configurations [4], [14]–[16], [25], [32].
Recent work such as QARC [42] and Chang et al. [7] extends
the scope and explores target properties that are also traffic-
related, for example network availability in terms of link load
conditions. Inherently, availability by definition concerns both
connectivity and bandwidth, i.e. link load [19], [21], which
implies that traffic dynamics has to be taken into consideration
in addition to path-related properties. These two lines of work
share the same conventional approach which is deterministic
verification. That is, one studies the worst-case scenario under
different failure cases and verifies if the target property can be
guaranteed or not.

As argued in §I, deterministic verification is insufficient for
operators to comprehensively and accurately understand the
impact of network uncertainties and the exact robustness level
of their network. Thus, some recent work such as NetDice [41]
and ProbNetKAT [40] has adopted a probabilistic approach
to verification: they compute the probability that the target
property is going to hold in all possible cases. Due to the com-
plexity of probabilistic verification, they constrain themselves
to simple path-related properties again for which probability
may be obtained by enumeration. Moreover, the stochastic

branch of network calculus [8] models statistical multiplexing
and scheduling to obtain performance bounds on quantitative
properties such as delay and congestion. Yet, its fine-grained
packet-level modeling inherently hinders it from being applied
to model traffic management strategies and to reason about
availability.

We explore the unchartered territory of probabilistic verifica-
tion of traffic-related properties, i.e. network availability, in this
work. The essential question we want to answer is, what is the
probability that the network is still available without any link
overload under failures and dynamic demands? The interaction
across the varying network demands and its impact on link
load makes the probabilistic analysis much more challenging as
introduced in §I and will be formally shown in §III. Before that,
we present a few usecases of probabilistic analysis of network
availability to motivate its practical relevance and importance.

C. Usecases

The following tasks in network management can directly
benefit from probabilistic analysis of availability.
Network design and planning. The network needs to be
constantly upgraded in response to the rapid growth of de-
mands [18]. Operators need to determine where to add links
and how much capacity to provision, which are very difficult
to change afterwards. Thus, proactive probabilistic analysis can
provide quantitative measures to evaluate candidate network
designs under uncertainties and make better decisions.
Tunnel selection. Tunnel selection is essential in TE. A good
choice of tunnels improves the performance and robustness of
the network. Currently TE tunnels are selected heuristically
based on path distance and/or cost. Given a probabilistic analy-
sis of the network availability using different tunnels, operators
can now assess and thereby select them more strategically. It
also applies to backup tunnel selection for failover.
Service differentiation. A quantitative analysis of network
availability further allows operators to orchestrate different ap-
plications running over their WANs to make their own tradeoff
decisions according to their needs, thereby enabling service
differentiation.

III. PROBLEM DEFINITION AND CHALLENGES

We now formulate our problem and highlight its technical
challenges.

A. Model

Let (V,E) be the network topology, where the nodes V rep-
resent routers, and edges E represent directed links. Each link
e has a capacity Ce. D is a set of independent demands, where
each demand d has (aggregated) traffic volume νd. Similar to
previous work [7], [42], we model νd as a continuous random
variable uniformly distributed in its range [Ld, Ud], where Ld

is a lower bound and Ud is an upper bound known a priori.
A TE plan specifies the traffic splitting weights W t

d across the
tunnels Td for each demand d such that

∑
t∈Td

W t
d = 1.



B. General Problem Formulation

We now formally define the overload-free property and the
network analysis problem with regards to this property in our
probabilistic framework.

Definition 1. Overload-free property ϕf . Given a failure
scenario f , where f is a set of failed links f ⊆ E, let Gf =
{gfe |e ∈ E} be a set of functions where each function gfe
takes as input a vector of demands ν = [ν1, ν2, . . . , νn], where
Ld ≤ νd ≤ Ud,∀d ∈ {1, ..., n}, and outputs the resulting
traffic load on link e.

The overload-free property is defined as:

ϕf =
∧

e∈E\f

(
gfe (ν) ≤ Ce

)
, (1)

Clearly, a network is overload-free if and only if all the links
(other than the failed ones) are not overloaded. We assume that
failed links lose their capacity completely and are removed
from the topology. The key here is the functions Gf , which
encode the traffic management scheme that determines the total
link load (in the steady state). We refer to them as traffic
management (TM) functions hereafter. Before we present the
exact forms of TM function, let us first define the overload-free
probability of the network for a given failure scenario f which
does not depend on the details of gfe (·).

Definition 2. Overload-free probability Pr(ϕf ). Given ϕf in
Eq. (1), the overload-free probability is:

Pr(ϕf ) =
µ(Rf )∏

d (Ud − Ld)
, (2)

where Rf is the set of demand values for which the overload-
free property ϕf under f holds, that is,

{ν | ϕf

∧
d

νd ≤ Ud

∧
d

−νd ≤ −Ld}, (3)

and µ(Rf ) is the Lebesgue measure of Rf .

Rf can be regarded geometrically as a high-dimensional
convex body enclosed by hyperplanes defined by inequalities
(3), and µ(Rf ) is the volume of this convex body. Therefore,
Pr(ϕf ) is the ratio of two volumes, namely the volume of Rf

and the volume of a hyperrectangle defined by the ranges of
demands.

Our analysis problem can then be formulated.

Definition 3. Network availability analysis. Given a set of
failure scenarios F , our analysis procedure computes the
probability of the network being available, i.e. overload-free:

Pr(ϕ) =
∑
f∈F

Pr(ϕ|f)Pr(f) =
∑
f∈F

Pr(ϕf )Pr(f). (4)

We expect the failure set F and failure probabilities Pr(f)
to be given by operators. The main challenge is then to figure
out the (failure-specific) overload-free probability Pr(ϕf ). For
tractability, we consider at most k link failures as much prior

work has similarly done [28]. To differentiate from the (failure-
specific) overload-free probability Pr(ϕf ), we refer to Pr(ϕ)
as the network availability hereafter.

Now let us present the concrete form of the TM function
gfe (·). A TM function has two parts. First, it captures the traffic
on link e following the TE plan defined by tunnel splitting
weights. In addition, it models the failover mechanism which
re-routes the victim traffic to e in response to failures. We use
an indicator variable Ht

e to describe if tunnel t traverses through
link e or not. Then the TM function can be written as:

gfe (ν) =
∑

d∈D,t∈Td

νdH
t
eW

t
d(1− St

f ) +Re(f, e), (5)

where St
f = 1(

∑
e′∈f Ht

e′ )>0.

Here St
f is an indicator that equals 1 when tunnel t is affected

by the failure scenario and 0 otherwise, and Re(f, e) is the
function that returns the re-distributed traffic load caused by
failure scenario f on link e. We present Re(f, e) that models
the two failover mechanisms we introduced in §II.
• Local rescaling. If tunnel t ∈ Td is affected by f (i.e.
St
f = 1), demand d’s traffic on it is re-routed to the remaining

tunnels in Td. The amount of traffic to be re-routed is thus∑
t∈Td

νdW
t
dS

t
f . Since rescaling uses the original splitting

weights, traffic re-routed to a remaining tunnel t′ has a rela-

tive weight of W t′
d∑

t∈Td
(1−St

f )W
t
d

among all remaining tunnels.
Thus, the re-distributed traffic on link e due to f is:

Re(f, e) =
∑
d∈D

(∑
t′∈Td

(1− St′

f )H
t′

e W
t′

d∑
t∈Td

(1− St
f )W

t
d

×
∑
t∈Td

νdW
t
dS

t
f

)
.

(6)

• Backup tunnels. For a failure scenario f where backup
tunnels are pre-computed, traffic on an affected tunnel t is
re-directed to its backup tunnel bt,f . Notice here we assume
at most one backup tunnel is used for each original tunnel
due to the switch’s limited rule space [44]. So we have

Re(f, e) =
∑
d∈D

∑
t∈Td

H
bt,f
e St

fW
t
dνd. (7)

C. Challenges of Computing Overload-Free Probability

We discuss the challenges of computing Pr(ϕf ) in this sec-
tion, by first establishing the hardness of the problem, followed
by presenting the limitations of prior work and our key idea.

In fact the overload-free probability Pr(ϕf ) is intractable to
compute as a counting problem. We prove that probabilistic
analysis of ϕf (a #SMT problem) is #P-hard [3], as stated
below.

Theorem 4. The overload-free probability Pr(ϕf ) is #P-hard
to compute.

Proof. We prove it by reducing the #P-hard problem of volume
computation of polytopes [11] to Pr(ϕf ). The overload-free
convex body Rf defined in Eq.(3) can be written as {ν|Aν ≤
b}, A ∈ Rm×n, where m is the number of inequalities in Rf



and n is the dimension of the demand vector ν. This is because
ϕf consists of TM functions defined by Eq. (5)–(7) which are
clearly affine. Thus, Rf is a n-dimensional polytope defined
by m hyperplanes, and according to Eq. (2), the problem of
polytope volume computation can be reduced to our problem
of calculating Pr(ϕf ) and vice versa.

#P-hard problems are more difficult than NP-hard, because
they consist of counting problems associated with the decision
problems in NP [3]. In other words, determining whether there
is an assignment satisfying SMT constraints is NP-hard, while
counting “how many” assignments satisfy SMT constraints is
#P-hard. Further, due to the continuous and non-enumerable
nature of dynamic demands [7], our problem is a continu-
ous model counting on SMT constraints. Therefore we note
that probabilistic verification methods based on model check-
ing [27] are not applicable here.

Specifically, notice that n here is the number of dynamic
demands in the network which is at most |V |2, and the number
of hyperplanes m is O(|E|+2n). Thus the polytope Rf related
to the overload-free probability Pr(ϕf ) is extremely complex
with high dimensions and with number of hyperplanes increas-
ing in n. It has been shown that when the number of dimensions
n is larger than 15, the polytope’s volume cannot be exactly
computed [6]. Further, no deterministic approximation scheme
is known for finding the volume in the general case [31]. So we
turn to randomized approximation that approximates the high-
dimensional volume within arbitrarily small error ϵ with high
probability in polynomial time.

The common approach to randomized polytope volume ap-
proximation is Multiphase Markov Chain Monte Carlo. Read-
ers are referred to the survey [37] or a series of work [10],
[11], [24], [31] for more details. Roughly speaking, it works
by strategically generating a sequence of convex bodies, es-
timating the ratio of the volumes of two consecutive bodies
by sampling many points using Markov Chain random walk,
and computing the polytope volume as the product of all such
volume ratios. A series of theoretical work from [10] to [31]
has improved the efficiency of randomized approximation of
polytope volume from requiring O(n23) to O(n4) boundary
oracle calls. The boundary oracle is a procedure necessary to
ensure the sample points are inside the polytope. Yet this is still
inefficient for practical use. The single-process implementation
of the state-of-the-art O(n4) algorithm [31] takes more than
two hours for n up to 9 [30], and a GPU implementation only
scales to n = 20 [33]. This does not work for a reasonable-
sized WAN that can easily have more than 100 demands.

D. Our Key Idea
We notice that the overall computational cost of polytope

volume approximation has two parts: (i) the number of bound-
ary oracle calls which most theoretic work focuses on, and
(ii) the number of operations required per oracle call, i.e., the
oracle complexity. Since the former is difficult to reduce, we
concentrates on mitigating the oracle complexity in this work.

Recall that the polytope boundaries are defined by m hyper-
planes. Our key insight is that we do not need to compute the

position relationship of a point with all the hyperplanes. We find
that a large number of these hyperplanes are actually parallel
to the random walk direction, in which case the sample point
could not step outside the boundary defined by this hyperplane.
Thus we can safely bypass checking these hyperplanes and save
the associated computation cost. We will show that this can
reduce the oracle complexity of our random walk algorithm
from O(m) = O(|E|+ 2n) to O(|E|) in our problem.

IV. OUR SOLUTION

In this section, we present the complete design of Pita, a
probabilistic analysis tool on network availability. We first
present the overall framework based on Multiphase Markov
Chain Monte Carlo (Multiphase MCMC) (§IV-A). Next we
introduce our optimization to reduce the computational cost
of the random walk oracle (§IV-B). Finally, we present a
technique to rapidly compute the overload-free probability in
special failure scenarios (§IV-C).

A. Overview

Algorithm 1 shows the overall working of Pita. Pita takes as
input network topology, TE plan, failover mechanism, demand
ranges, failure scenarios and probability model, and approxi-
mates the overload-free probability Pr(ϕf ). First we check if
f belongs to a special case where the overload-free probability
degenerates to an SMT problem which can be readily handled
(§IV-C). In the general case when it is not an SMT problem,
Pr(ϕf ) is approximated following the common Multiphase
MCMC framework with our revised boundary oracle (§IV-B).
Finally, Pita produces the overall availability Pr(ϕ).

Algorithm 1 Pita: Computing availability Pr(ϕ)

Input: The network topology (V,E), tunnels Td assigned for each
d ∈ {1, ..., n} with weight W t

d for each t, dynamic demands
{νd} with [Ld, Ud] for each d, failures scenarios F , failure model
{Pr(f)} for f ∈ F , and failover mechanisms.

Output: Approximation of availability Pr(ϕ).
1: Pr′(ϕ)← 0;
2: for f ∈ F do
3: Calculate ϕf ; ▷ §III-C
4: Pr(ϕf )← SMT Check(ϕf ); ▷ Algorithm 3
5: if Pr(ϕf ) is unknown then
6: Approximate Pr′(ϕf ); ▷ Algorithm 4 in Appendix §A
7: end if
8: Pr′(ϕ)← Pr′(ϕ) + Pr′(ϕf )Pr(f);
9: end for

10: return Pr′(ϕ);

We briefly introduce the Multiphase MCMC framework
here. Algorithm 4 in Appendix §A has the complete details.
We construct a sequence of convex bodies Kα ⊆ Kα+1 ⊆
... ⊆ Kβ−1 ⊆ Kβ = Rf , where the first body Kα has known
volume and the last body Kβ is our target polytope Rf . Each
convex body is the intersection of Rf and a n-ball Bi. The
smallest ball corresponding to Kα is the Chebyshev ball of Rf ,
i.e. the largest ball totally enclosed by Rf , and the largest ball
corresponding to Kβ is a ball (almost) enclosing Rf (Line 4
in Algorithm 4). Then the polytope volume µ(Rf ) is given by



Algorithm 2 RandomWalk(p,K,w)
Input: A point p in the convex body K, the walk length w.
Output: A new point p′ ∈ K.

1: for i = 1 to w do
2: Pick a line l with a random uniformly distributed coordinate

direction through p;
3: Compute chord ch = l ∩K; ▷ §IV-B
4: Pick a random point p′ uniformly distributed on ch;
5: end for
6: return p′;
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Fig. 4: Running time (seconds) of the Multiphase MCMC for Pr(ϕf )
(Algorithm 4 in Appendix §A) with different random walk algorithms for
a network with n = 100.

the product of volume ratios between two consecutive convex
bodies. To compute the ratio, say vol(Ki)/vol(Ki−1), we gen-
erate many uniformly distributed points in Ki by Markov Chain
random walk, and count the fraction of them falling in Ki−1.
Random Walk. Before we optimize the oracle complexity
involved in each step of the random walk, we need to first
determine which random walk algorithm should be used for
our problem. We focus on hit-and-run random walk which
yields the fastest algorithms today [5], [12], [29], [39]. There
are two variants: Random Direction Hit-and-Run (RDHR) [5]
and Coordinate Direction Hit-and-Run (CDHR) [39]. Given
the current point p, both RDHR and CDHR determine the
next point p′ ∈ K by picking a random line l through p,
and moving p to a random point p′ uniformly distributed on
the chord K ∩ l. The difference is that RDHR picks l with a
direction uniformly distributed in the space, while CDHR picks
the directions uniformly from all the axes (i.e. the line is parallel
to one axis).

To choose between RDHR and CDHR, we note that RDHR’s
oracle complexity is O(mn) operations per oracle, while
CDHR’s is O(m) [2]. To verify the impact of oracle complexity
on the actual running time of our solution, we also conduct an
empirical experiment with different random walk algorithms.
We set the walk length according to its empirical bound sug-
gested in [12], [13] and use the same error parameter ϵ. As
shown in Fig. 4, CDHR is 31× faster than RDHR and 54×
faster than ball walks in analyzing a network with 100 demands.
Thus we choose CDHR as the random walk algorithm in our
framework.

B. An Optimization for CDHR: OptHR

We now present our optimization to CDHR called OptHR,
which reduces its oracle complexity from O(m) = O(|E|+2n)
to O(|E|) without any accuracy loss in our problem.

We find that the main computational overhead in oracle is
computing the intersection points of line l with Rf , i.e., m
hyperplanes in K = Rf ∩ B, since the intersection of l with
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Fig. 5: A point could not walk outside
the boundary defined by hyperplanes
parallel to the direction of a step.
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Fig. 6: Updating a point in OptHR at
the first and second steps. The shown
polytope is of n = 2, m = 8.

a n-ball B is straightforward. This is necessary to check if the
sample point is within Rf or not. Our insight is that we do not
need to traverse every hyperplane as in the original CDHR.
As shown in Fig. 5, if the walk direction of p is parallel to
hyperplane h1 and h2, it is clearly impossible for p′ to step
outside the boundaries defined by h1 and h2, and we can safely
bypass this hyperplane in the computation without any issue.

More formally, recall that Rf = {D ∈ Rn|AD ≤ b}, where
A ∈ Rm×n. Let p0 be the current (initial) point and l = {y ∈
Rn|y = p0 + λv, λ ∈ R} be the randomly selected coordinate
line through p0, where v ∈ Rn is the direction of l. Fig. 6
shows an example. Then, we use p± = p0 + λ±v to represent
the intersection points between l and Rf , where

λ± = max{±λ|A(p0 ± λv) ≤ b}, (8)

namely λ± have the largest absolute value making points p0±
λv on l within the area AD ≤ b. To obtain the intersection
points p±, we only need to compute λ±. Since a point walks
in the coordinate direction, v is a coordinate vector. Let j be the
walk coordinate of current step in CDHR, i.e., v = ej , where
ej is the j-th unit coordinate vector. Then Eq. (8) becomes
±λAv = ±λA∗j ≤ −Ap0 + b, where A∗j is the j-th column
of A. Let z = −Ap0 + b ∈ Rm, then in the original CDHR,

λ+ = min
1≤i≤m

max
λ

{λ > 0|λaij ≤ zi}

λ− = max
1≤i≤m

min
λ

{λ < 0|λaij ≥ −zi},
(9)

where aij is the i-th element of A∗j , and zi is the i-th element
of z. Thus, getting λ± in CDHR requires O(m) (arithmetic
and comparison) operations. In OptHR, assume there are s
hyperplane parallel to ej and without loss of generality, they
are the 1-th to s-th hyperplanes, we obtain λ̂± by

λ̂+ = min
s+1≤i≤m

max
λ

{λ > 0|λaij ≤ zi}

λ̂− = max
s+1≤i≤m

min
λ

{λ < 0|λaij ≥ −zi}.
(10)

Lemma 5. λ+ = λ̂+, λ− = λ̂−.

Proof. We prove the case for λ+ and λ̂+ for brevity. Since
ej is parallel to s hyperplanes, Aq∗ · ej = aqj = 0 for
q = 1, ..., s where Aq∗ is the q-th row of A. Notice p0 is within
the boundary, i.e., Ap0 ≤ b, so zi ≥ 0 for ∀i. Thus λ̂+ in
Eq. (10) also satisfy λaqj ≤ zi for i = 1, ..., s.

Now if the number of such hyperplanes that can be skipped
s is substantial, this can save a lot of computational cost.
Fortunately, we can show that this is the case in our problem.



Lemma 6. For any Rf defined by Eq. (3), there are 2n − 2
hyperplanes parallel to the random walk direction of CDHR
at each step.

Proof. We prove it by constructing a mapping between a unit
coordinate vector and a set of hyperplanes. For a unit coordinate
vector ej , let τ : ej → Ψj , where Ψj = {νd ≤ Ud,−νd ≤
−Ld}d=1,...,j−1,j+1,...,n. Assume a hyperplane in Ψj is the q-
th hyperplane in Rf . We have aqi = {1,−1} for i = d and
aqi = 0 for other i. Obviously, j ̸= d. Thus aqj = 0. Then this
hyperplane is parallel to ej because Aq∗ · ej = 0. Notice that
|Ψj | = 2n− 2.

There are some other details to conclude that the oracle
complexity of OptHR is O(|E|). Notice that at the first step of
random walk, aside from λ± in O(|E|) operations, obtaining
z = Ap0 + b consumes O(mn) operations. Thus, updating p0
requires O(mn) operations in total. Yet this only holds for the
first step. Let p1 = p0 + cej be the second point walked from
p0, where c > 0 is the randomly chosen step size at the first
step. Let p1 walks in v′ = ek at the second step. The new λ±

is obtained by maximizing ±λA∗k ≤ −Ap1 + b = z′. This
time, the computation of z′, which is z − cA∗j , takes O(|E|)
operations (we omit this proof as it is very similar to that of
Lemma 5).

Furthermore, as can be seen in Algorithm 2, we obtain the
N sample points for the volume ratios as follows: starting from
an interior point, when we perform w random walk steps, we
take the last point as a sample point. So the expensive boundary
oracle call with O(mn) complexity is only done once; after that
all the Nw boundary calls are in O(|E|) each. As the total walk
steps Nw is far larger than mn, the overall (amortized) cost of
each oracle is O(|E|).

Theorem 7. The oracle complexity of OptHR is O(|E|).

We can further show the overall complexity of obtaining
Pr(ϕf ) with OptHR. Specifically,

Proposition 8. Computing Pr(ϕf ) (Algorithm 4) with OptHR
consumes O(|E|n3 log n log(ρmax/ρmin)) operations.

Proof. According to Algorithm 4 in Appendix §A, we need
a total of n log ρmax/ρmin convex bodies. For each of them,
we need to use N = O(n log n) sample points for the volume
ratios. Each sample point is generated after w = O(n) random
walk steps with each step consuming O(|E|) operations by
OptHR. Putting everything together, the algorithm needs
O(|E|n3 log n log(ρmax/ρmin)) operations.

In contrast, O((|E|n3 + n4) log n log(ρmax/ρmin)) oper-
ations are needed for CDHR to compute Pr(ϕf ) [2]. Here
ρmax/ρmin is fixed given Rf as defined in Eq. (3), which
reflects the problem structure related to the network topology,
capacity of links and TE. Therefore, the efficiencies of both
CDHR and OptHR are dominated by terms associated with
the number of dynamic demands n. From the above analysis,
we can conclude that the performance of OptHR necessarily
exceeds CDHR. Recall that n is at most |V |2. Thus, n grows

quadratically with the network scale increasing, which makes
OptHR overshadow CDHR even further.

C. Special Cases When Pr(ϕf ) Can Be Determined

Another factor of the complexity of availability analysis
Pr(ϕ) is the combinatorial nature of the failure scenarios.
Consider a WAN with 20 links (40 edges). If operators wish to
consider up to 2 link failures, the number of failure scenarios is
20 +

(
20
2

)
= 210, which implies a naive solution needs to call

the highly complex Multiphase MCMC based procedure 210
times to obtain the overload-free probability in each scenario.

We notice that in our problem there exists some special cases
in which the overload-free probability is either 0 or 1 and does
not require running Multiphase MCMC. Consider the running
example in Fig. 1, and suppose demand 2’s range is [9, 12].
If the splitting weights of tunnels C-B-E and C-F-E is 1:2,
obviously the network never would be overloaded when link
AD fails and local rescaling is used. On the other hand if the
weights are 2:1, the network is definitely overloaded. These
cases do not require any randomized approximation to obtain
an intuitive answer to the overload-free probability.

To detect these special cases, we can express the correspond-
ing SMT constraints as follows. For the case when the network
is never overloaded, the constraint can be expressed as:

ϕ+
f :=

(∧
d

νd = Ud

)
∧ ϕf , (11)

that is, the network is overload-free under f even when all
demands are at their maximum values. Similarly, the SMT
constraint for the case Pr(ϕf ) is 0 is

ϕ−
f :=

(∧
d

νd = Ld

)
∧ ¬ϕf . (12)

When there is at least one overloaded link when all the demands
are at their minimum, Pr(ϕf ) = 0.

SMT problems are typically NP-hard [9] and solving them is
intrinsically more efficient than that of #SMT problems. Thus
we leverage modern SMT solvers to directly verify if the con-
straints ϕ+

f and ϕ−
f hold, which is summarized in Algorithm 3.

This is used as the first step in the overall solution Algorithm 1
before running the expensive Multiphase MCMC to further
reduce the running time.

Algorithm 3 SMT Check(ϕf )

1: if ϕ+
f is SAT then

2: return 1;
3: else if ϕ−

f is SAT then
4: return 0;
5: else
6: return unknown;
7: end if

We comment that techniques from prior work [41] that prune
the failure cases cannot be effectively applied to our problem.
This is because the nature of traffic-related properties is differ-
ent from path-related properties. Traffic loads in the network
are highly correlated: The failure of one link could affect the



Network Nodes Edges Demands
GridNet 9 40 (max.) 81
Abilene 12 30 (max.) 144

B4 12 38 (max.) 144
ANS 18 50 (max.) 324

TABLE I: Network topologies used in evaluation.

demands on paths that do not involve this link since it may
cause traffic from victim demands to be redistributed.

V. EVALUATION

In this section, we evaluate the effectiveness of our solution
Pita by answering the following questions:
• How quickly can Pita analyze overload-free probability?

How does our optimization speed up the analysis process?
(§V-A)

• What factors influence the performance of Pita? (§V-A)
• How Pita can be used to (i) identify high-risk failure scenar-

ios, (ii) select appropriate TE schemes? (§V-B)
• How available are real WANs across uncertain network con-

ditions? (§V-B)
We implement Pita in Python and C++ with Z3 [34] as the

SMT solver and the open-source implementation of Emiris and
Fisikopoulos [12] as the basis for our OptHR-based Multiphase
MCMC. Our experiments run on a machine with 64GB RAM
and ten CPU cores at 3.7GHz. To evaluate our work on different
network scales, we use Google’s B4 [23] and three real topolo-
gies from Topology Zoo [1]: GridNet, Abilene, and ANS, as
shown in Table I. The fourth column is the number of demands
used in the evaluation unless indicated otherwise. We use the
gravity model [36] to generate traffic matrices for TE such that
the resulting link utilization without failures is between 0.6 and
0.8. We evaluate three TE schemes: k-shortest paths (KSP)
where a demand’s traffic is equally split across the tunnels,
maximum flow (MaxFlow), and maximum flow with minimum
latency (MinLatency) [23]. These traffic volumes are taken as
the lower bounds of the demands, and we set the upper bounds
to be 105% of the lower bounds. To characterize the network
availability in the most general form, we set four networks to
have all their possible demands dynamic. Thus the maximum
dimension of polytope n is 324 in this evaluation.

We consider failures with at most 2 links. Moreover, we
adopt the failure model that each link in the network fails
independently at the probability of 0.001 based on the empirical
study [17]. Local rescaling is the default failover mechanism.
We set ϵ = 1 as default in all random walk algorithms. All data
points report the average of five runs.

A. Pita’s Running Time

We now evaluate our solution’s running time for analyzing
the failure-specific overload-free probability and the overall
availability. Recall that as shown in Lemma 5, our solution with
OptHR produces the same result as the original CDHR.

Analyzing overload-free probability. We record the time
taken to compute Pr(ϕf ) for each failure scenario and report
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Fig. 8: Time (seconds) respect to
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the average over all failure scenarios and TE schemes of the
same network, including probabilities of three TE schemes
under 1-link and 2-link failures, as they share the same com-
putation complexity.

Fig. 7 shows the results. We make three observations. First,
OptHR significantly outperforms CDHR across all topologies
upon all failure scenarios, especially with a large number of de-
mands. OptHR improves analysis time by 1.71x, 1.92x, 1.99x,
and 2.25x on average, respectively, for the four networks. Sec-
ond, the analysis time generally increases with the number
of demands. Third, the analysis time is also affected by the
network scale, though to a lesser extent: Abilene and B4 have
the same demand numbers, while B4 with more edges takes a
bit more time.

We further illustrate the last two observations in Fig. 8 which
depicts the running time of analyzing a network with differ-
ent numbers of dynamic demands. This time, we set partial
demands as dynamic and keep other demands constants at
their lower bounds. We set the number of dynamic demands
varying from 40 to the maximum number of demands a network
could support (in the 4-th column of Table I). From Fig. 8,
the analysis time of the same network grows rapidly when the
number of dynamic demands increases. This is as expected
since the complexity of our algorithm has the highest power
in n (Proposition 8).

Besides, we could find from Fig. 8 that under the same
number of dynamic demands, networks with a larger scale have
a longer running time, but the increase is limited compared
to that brought by more numbers of dynamic demands. To
make this observation more convincing, we supplement a larger
network AttMpls with 25 nodes and 112 edges and make it
under the same set of numbers of dynamic demand as ANS.
Notice the blue line and orange line in Fig 8. Even if AttMpls’s
scale is nearly twice as bigger as ANS’s, the running time of
a network is 10x when the number of the dynamic demand
increases from 100 to 200, while far less than 2x when the
network scale becomes twice.

In summary, our answer to the first question is that our
domain-specific optimization OptHR reduces the running
time sequentially, with more speedup at larger networks. Pita
could analyze failure-specific overload-free probabilities in tens
of seconds, minutes, and an hour under forty dynamic demands,
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one hundred demands, and two hundred dynamic demands,
respectively.

Analyzing overall availability. We now present the time of
Pita to analyze overall availability under at most 1-link failure
and 2-link failure settings separately. Again, we report the
average over all TE schemes.

We first illustrate the fraction of scenarios whose overload-
free probabilities are identified directly by SMT Check in Fig.
9. In our setting, each network has some failure scenarios
of either 0% overload-free (ϕ−

f ) or 100% overload-free (ϕ+
f ).

These fractions are specific in our setting. They are determined
by the traffic situation in the network.

We report the time required for analyzing an overall avail-
ability in Fig. 10. Intuitively, networks with less scenarios
figured out by SMT Check take more time on analyzing the
availability. B4 requires more than 20 minutes and 7 hours for
the validation of at most 1-link and 2-link failures availability,
respectively. While the corresponding time for Abilene is less
than 10 minutes and 1 hour, albeit Abilene of same dynamic
demand numbers as B4.

In general, time on analyzing an availability grows sequen-
tially with k in “at most k-link failures” specified by operators.
For ANS, 4 hours and 65 hours are needed for the validation of
an availability under at most 1-link and 2-link failures. But we
can see from TABLE II that the largest difference of validated
availability between two failure spaces is less than 0.01%.
So operators can select the target failure spaces based on the
required service level and their time budget.

In summary, our answer to the second question is that the
running time of Pita is decided by both the efficiency of
analyzing a failure-specific overload-free probability and
the fraction of failure scenarios that could not be handled by
SMT Check. The former is mainly determined by the number
of dynamic demands in the network. The latter is decided by
the traffic situations in the network after failures.

B. Analyzing Real Networks

This part presents the analysis results produced by Pita on
four real networks with all their demands being dynamic. To
highlight how Pita functions and interesting results found, we
first analyze the availability under k-link failures, namely the
failure space incorporates all scenarios with k links failing.
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Given the above failure model, all scenarios of the same k share
the same failure probability. We report our results of k = 1, 2
in Fig. 12.

Pita discovers that networks undergo varying degrees of
risk under uncertain network conditions and convey two main
observations. First, the probability of overload increases when
more links fail: the best overload-free probability of networks
ranges from 92% to 100% under 1-link failure and 77% to
100% under 2-link failures. Second, the choice of TE scheme
affects the result to some extent. Interestingly, the best choice is
not fixed for different networks in our settings: for GridNet, B4,
and ANS, MinLatency is the best, while for Abilene, MaxFlow
is the best. So the result of Pita could be another metric for
operators to select the appropriate TE scheme. Note that our
metric is different from measuring an “availability” given the
trace of traffic, which is used in some TE work to evaluate their
scheme [26]. We model the dynamic conditions directly and in
a more general manner: it does not adhere to any concrete traffic
matrix. Thus Pita is more flexible and usable for operators to
proactively profile their network availability.

Besides, we present the overload-free probability of B4 un-
der single link failure in Fig. 11. The failure of links 8-10 or 10-
12 definitely causes network overload. Link 7-11 failure is also
dangerous, although it is not 100% leading to network overload.
Failures of another three links are not relatively imperative: the
overload-free probability exceeds 50% under link 11-12 failure
and is no more than 50% under link 5-6 or 5-4 failure. Prob-
abilistic analysis achieves more accurate availability profiling
than deterministic verification like QARC [42], which simply
and roughly tells operators that all six links mentioned above



Network KSP MaxFlow MinLatency
k ≤ 1 k ≤ 2 k ≤ 1 k ≤ 2 k ≤ 1 k ≤ 2

GridNet 99.833% 99.830% 99.786% 99.782%‘ 100% 100%
Abilene 99.900% 99.900% 100% 99.999% 100% 99.997%

B4 99.567% 99.561% 99.552% 99.548% 100% 99.996%
ANS 99.805% 99.800% 99.609% 99.601% 99.805% 99.802%

TABLE II: Network availabilities under various TE schemes.

could lead to overload.
In summary, our answer to the third question is that Pita

could help operators identify the severity of various failure
scenarios and select an appropriate TE scheme by figuring out
the overload-free probabilities given uncertainties concerned.

Based on the above failure-specific overload-free probability
results, we now compute the network availability. Recall that
we define availability as the overload-free probability under
“at most” link failures. This time we adopt the same fail-
ure model but normalize the failure probability of a scenario
upon all scenarios in F including no failure one such that∑

f∈F Pr(f) = 1. For example, if operators consider at most
2-link failures, for a failure scenario f of k = 1 happening at
Abilene with 15 links (30 directed edges in our network model),
Pr(f) is 0.001×0.99914/(0.99915+

(
15
1

)
×0.001×0.99914+(

15
2

)
× 0.0012 × 0.99913). We report the availability result in

TABLE II.
Applications in different service classes require various

availability SLOs. For example, there are four service classes
in B4 requiring SLO 99%, 99.9%, 99.95%, 99.99%, from
the first service class to the fourth service class [21]. So our
results are recorded to the third digit after the decimal point
to cover these four class requirements. Intuitively, considering
more failure scenarios makes analysis characterize availability
more precisely. But we observe that considering at most 2-link
failures is enough in most cases, which only changes the third
digit after the decimal point compared to scenarios under at
most 1-link failures.

Again, networks with various TE scheme selections have dif-
ferent availability results. TE scheme in our setting could even
affect the service class provided in some networks. For Abilene,
the availability under KSP reaches the second service class
(99.9%), while under MinLatency reaches the fourth service
class (99.99%). Note that availability is determined by network
topology, traffic allocations, and network condition variations
comprehensively. The above results are produced under our
evaluation settings and might differ for other topology and
traffic patterns.

In summary, our answer to the fourth question is that in our
settings, Pita finds that at the best, three networks could
provide the fourth service class and one network provides
the first service class.

VI. LIMITATIONS AND FUTURE WORK

We now discuss limitations of our work and possible future
directions.
Independent demands. Our framework can be adapted to de-
mands with dependencies. When the correlation of demands is
affine, e.g., complementary or linear growth, the constraints in

our problem could be simplified since some demand variables
could be represented by their dependent variables. We leave the
modeling and analysis of dependent demands to future work.
Uniform demands. Our framework focuses on demands with
uniform distribution in their range. To extend to the general case
with non-uniform demand distributions, the computation of the
problems in these scenarios requires different sampling algo-
rithms corresponding to the new distribution, instead of uni-
form sampling in the polytope as used in the current approach.
We plan to extend Pita to consider non-uniform demands in the
future.

VII. CONCLUSION

We presented Pita, a novel probabilistic analysis tool for
network availability. First, we have presented a quantitative
analysis framework that operators can use to characterize their
network availability under continuous and non-enumerable un-
certainties. Second, we have developed a practical algorithm
to obtain the overload-free probability without any assumption
on network topologies, failures, or traffic variations. Third, we
have demonstrated the promise of our framework on real net-
works and its effectiveness in helping operators to understand
network availability comprehensively in a proactive manner.
Our results encourage us to extend our work on richer demand
patterns, understand more complex network performance under
failures and study other challenging tasks in network manage-
ment in the future.
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APPENDIX A
MULTIPHASE MCMC

Algorithm 4 Multiphase MCMC for Pr(ϕf )

Input: Overload-free property ϕf , error parameter ϵ.
Output: The approximation to the overload-free probability Pr(ϕf ).

1: Calculate Rf ; ▷ Eq. (3)
2: N ← 400ϵ−2n logn; ▷ # of points per ball
3: Compute the Chebyshev ball B(c, ρmin);
4: Compute the largest ball B(c, ρmax), where ρmax is the largest

distance between c and N points generated additionally;
5: α← ⌊n log ρmin⌋; β ← ⌈n log ρmax⌉; ▷ sequence range
6: generate a random point p in Kα = Rf ∩B(c, ρmin);
7: µ′(Rf )← vol(Kα) = 4πρ3min/3; ▷ initialization
8: w ← ⌊10 + n/10⌋; ▷ walk length
9: for i = α+ 1 to β do

10: Ki ← Rf ∩B(c, 2i/n);
11: count← 0;
12: for j = 1 to N do
13: p← RandomWalk(p,Ki, w); ▷ Algorithm 2
14: if p ∈ B(c, 2(i−1)/n) then
15: count← count+ 1;
16: end if
17: end for
18: µ′(Rf )← µ′(Rf ) · (N/count);
19: end for
20: return µ′(Rf )/

∏
d(Ud − Ld);
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