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Background - Persistent Memory

* Advantages of PM
e Byte-addressable access like DRAM (e.g., Intel Optane, CXL-SSD).
e Avoids storage stack overhead.

e Crash Consistency Challenge
e Writes are buffered and then flushed to the PM in arbitrary order.

e Programmers must use clflush/sfence or transaction interfaces
(TXs) to ensure crash consistency, but this is error-prone.



PM Crash Consistency @

* For a sequential program, typical types of requirements for
achieving consistent PM program states after crash include:

e Durability: A Store persists before the end of program.
e Ordering: A Store to addry persists before a Store to addr,.
e Atomicity: A set of Stores persist together (all or nothing).

Durability Ordering Atomicity
. Tx_begin ();
STTadd) gljncct‘c()l.us'"(“ddm' STF (ol
clflush(addr); ’ ST (addry);

ST&C-L'F-LU.Sh(addrz),' Tx end()'



PM testing tools are proposed...
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PM testing tools are proposed...

Input Output

PM program/traces

| ___program inputs __ | {Testing Tool} <@’)
Crash Consistency Violations

Oracles/PM property




Specifying PM Property f@

e Method 1: User Annotation - Time-consuming and still error-prone.

e PMTest[ASPLOS "19], XFDetector[ASPLOS "20], Agamotto[OSDI’20],
PMDebugger[ASPLOS "21].
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Specifying PM Property M

e Method 1: User Annotation - Time-consuming and still error-prone.

e PMTest[ASPLOS "19], XFDetector[ASPLOS "20], Agamotto[OSDI’20],
PMDebugger[ASPLOS "21].

* Method 2: Persistency Model - Only provide ordering properties.
e Strict Persistency

e Robustness: reducing persistency to memory consistency model.
e Strict (PSan [PLDI ’22]), TSO (PMVerify [ASPLOS '25]).

* Method 3: Inferring PM property + Covering part of Atomicity
Properties

. Ba.sed on dependency patterns - Fail to infer critical atomicity
* Witcher [SOSP "21], Huang et al. [ASE '24]. properties without explicit

dependency. 8
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Counting-correlated Variables

* An example:

e childrenCount tracks the number of valid pairs of key and child pointer
in a children node in persistent adaptive radix tree.

109 N4::getChildren (...) { childrenCount

116 ——

117 children|childrenCount]| = std::make tuple(key, child); :

118 childrenCount++; DD children
119

} 9




2

Counting-correlated Variables

* An example:

e childrenCount tracks the number of valid pairs of key and child pointer
in a children node in persistent adaptive radix tree.

. . : childrenCount
109 N4..getCh11dre.:n (..) 4 They should be
116 Ix_begM in the same TX
117 children|childrenCount| = std::make tuple(key, child); :
118 childrenCount++* DD children
119 Tx_end();

)

10
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Counting-correlated Variables

* An example:

e childrenCount tracks the number of valid pairs of key and child pointer

in a children node in persistent adaptive radix tree.
* Without atomic persistence, upon a crash,

e partially persisting childrenCount leads to the return of dangling

pointer

109 N4::getChildren (...) { childrenCount

o . They should be
116 Ix_begin(); in the same TX

119 Tx_end();

} Not yet
persisted

117 children|childrenCount| = std::make tuple(key, child); \ 7 :
118 childrenCount++; ” D children
AN

11
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Counting-correlated Variables

* An example:

e childrenCount tracks the number of valid pairs of key and child pointer
in a children node in persistent adaptive radix tree.

* Without atomic persistence, upon a crash,

e partially persisting childrenCount leads to the return of dangling
pointer

e partially persisting children leads to data loss
109 N4::getChildren (...) {

childrenCount

o . They should be
116 Ix_begin(); in the same TX

A
117 children|childrenCount| = std::make tuple(key, child); :
118 childrenCount++; ”’D children
12

119 Tx_end();
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Counting-related Atomicity Property .owxon

* An atomic persistence requirement for variables with
relationship between:

logical size
BE8 int
container-like array(s) integer variable(s) that

tracks a numerical value
about the logical size(s)

13
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Counting-related Atomicity Property .owxon

* An atomic persistence requirement for variables with
relationship between:
a) the container-like array(s)

b) integer variable(s) that tracks a numerical value about the logical
size(s) of array(s)
int

e Under three scenarios: ...D

1) the logical size of an array

14
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Counting-related Atomicity Property .owxon

* The atomic persistence requirement for variables with
relationship between:

a) the container-like array(s)
b) integer variable(s) that tracks a numerical value about the logical

size(s) of array(s) int
J \
* Under three scenarios: | R | B

2) the sum of the logical sizes of multiple arrays

15
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Counting-related Atomicity Property .owxon

* The atomic persistence requirement for variables with
relationship between:

a) the container-like array(s)

b) integer variable(s) that tracks a numerical value about the logical
size(s) of array(s)
int

T
e Under three scenarios: B8 )

3) the complementary size of an array to a constant

16
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Prevalence of Counting Correlation  .ouwone

e Exist in many PM Data Structures, e.g.,

* Trees: child pointers array and its length/size of valid elements
e Ring buffers: buffer and its head/tail offsets
e Hash tables: table and its capacity

e Ever found bugs in other storage stacks
e btrfs: i_size mismatched with actual file size after fsync [1]
e ext4: i_disksize inconsistent with actual data size after crash [2]

[1] patchwork.kernel.org/project/linux-btrfs/patch/1434541763-23753-1-git-send-email-fdmanana@kernel.org/, 2015.
[2] https://marc.info/?|=linux-ext4&mM=151669669030547&w=2, 2018.



Why existing methods are limited

e Existing PM atomicity property inference efforts:
* Witcher [3], Huang et al. [4].
* Infer properties from control dependency patterns.

Multi-control

Inter-control

Dependency [3] Dependency [4]
: ctrl : ctrl
Dependency Pattern if (x) then m--- (mgx) if (x) then y--- (ygx)
if (y) then n--- (nﬂy) if(y) then x--- (xLﬂ)y)
dep dep
Inferred Likely

Atomicity Property

ATOMICITY(x, V)

ATOMICITY(x, V)

[3] Fu et al. Witcher: Systematic crash consistency testing for non-volatile memory key-value stores. SOSP (2021).

[4] Huang et al. Discovering likely program invariants for persistent memory. ASE (2024).
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Why existing methods are limited
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e Existing PM atomicity property inference efforts:

* Witcher [3], Huang et al. [4].

* Infer properties from control dependency patterns.

109
116
117
118
119

N4::getChildren (...) { MUlti'contrOl
ghildren[childrenCount] = std::make_tuple(key, child); Dependency [3]

childrenCount++;

Inter-control
Dependency [4]

if (x) then m--- (mﬂ)x)

if (x) then y--- (yhy)
dep

ctrl

if (y) then x--- (x—>vy)
dep

) dep
1 ot
. i (
A 2 children childrenCount  7Y)
99 for (uint32 t1=0; 1 <childrenCount; ++1) e ‘
100 const N *n = std::get<1>(children[i]); [
101 ) ﬁ ? <% children
} dep

Dependency analysis hardly captures the behaviors of container-like variables,
since they rarely act as “guardians” in conditionals.



Main Idea

Infer from dependency
patterns?

Infer by dynamic
statistics? (see paper)

P

HONG KONG

O

Infer by directly

capturing the
semantics!

20



Main Idea f@

* Problem:

e Expressing the semantics of counting- or
related variables is not =
straightforward.

* As the value of int is not always equal  Infer by directly
to the logical size it is intended to capturing the
represent throughout the program. semantics!

// inserting to an array with N elements p
for(i = size - 1; 1 >= p; 1i--){
array[i + 1] = arrayl([i]; array'’s logical size: N+1

} size’s value: N
array[pl] = 20;

6 size += 1;

N N (98] [R] —

21
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Our approach

Q1. How to capture the semantics of counting correlation?

 We observe the predictable access range behaviors of the
counting-correlated variables, named as Access Range Invariants
(predicates)

Q2. How to infer the counting-related PM properties?
e Use symbolic analysis to extract access range behaviors.

 Validate the counting-correlated variables by SMT constraint
solving.

22



Our approach Em

Q1. How to capture the semantics of counting correlation?

 Observation: All reads to the container ARR have address within
the area restricted by the value of its logical size variable int.\[ MISEREEI }

condition
e Because read behaviors encode the programmer’s intent for
acquiring the valid elements in a container.

.« // inserting to an array with N elements
for(i = size - 1; 1 >= p; 1i--){
3 array([i + 1] = arrayl[i];

i)
5 array[pl] = 20; \Qil.[p,sue) J

6 size += 1;

23
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Our approach

Q1. How to capture the semantics of counting correlation?
 The read access range invariant (predicate) for scenario 1 is:

Vp € P,Read, (ARR,idx) = idx < int,

three scenarios:
1) the logical size of an array

24
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Our approach

Q1. How to capture the semantics of counting correlation?
 The read access range invariant (predicate) for scenario 1 is:

Vp € P,Read, (ARR,idx) = idx < int,
e Similarly, for scenario 2 (N ARRs),

VpE€E P, z idx; < int,
IE[1,N]A Readp(ARR;,idx;)

three scenarios:

2) the sum of the logical sizes of multiple arrays

25



| Ourapproach

Q1. How to capture the semantics of counting correlation?
 The read access range invariant (predicate) for scenario 1 is:

Vp € P,Read, (ARR,idx) = idx < int,
e Similarly, for scenario 2 (N ARRs),

VpE€E P, z idx; < int,
IE[1,N]A Readp(ARR;,idx;)
* For scenario 3,

Vp € P,Read,(ARR,idx) = idx < C — int,

three scenarios:

3) the complementary size of an array to a constant

2
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Inference Approach

Q2. How to infer the counting-related PM properties?

e Step 1: Exploit Symbolic Range Analysis [5] to extract symbolic
values of all array access indices.

e Step 2: Filter out potential variables pairs/groups.

e Step 3: For each variable pair/group, validate if it satisfies the
access range invariant (predicate) through constraint solving.

LLVM LLVIM Prodram
% frontend q g
For eac h

For eac :
(Step1) ) array( (Step2)Candidate | pair | (Step 3) Invariant Counting-related
Symbolic Range Variable Pairs Validation with Atomicity Property

Generation J Generation SMT Solver

[5] Nazaré et al. Validation of memory accesses through symbolic analyses. OOPSLA, 2014. 27



| Inference Approach oy

HONG KONG

Q2. How to infer the counting-related PM properties?

e Step 1: Exploit Symbolic Range Analysis [5] to extract symbolic
values of all array access indices.

(a) Control Flow Graph (b) Symbolic Range
entry: entry:
1 SEC0 = f [sizeg] = [sizey, sizeg]
220 = [P0l = [Po. Pol
3| 107 sizepl Lio] = [sizey — 1, sizeg — 1]
}
for.cond- for.cond: . :
4| 1= ¢(i, iy [ [i;] = [Min(py — 1,sizey — 1), sizey — 1] ]
5 t =1, > py
6 br(t, for.body, for.end) forbody.
lic] = [po, sizeg — 1] ]
/ \ [idx] = [pg, sizeg — 1]
lidx2] = [po + 1, sizeg]
for.end: for.body: lizl = [po — 1, sizeg — 2]
7| is = o(i) 1| i. = o(i)
8| id=3 = p, 12 | idx = 1. forend:
9| *array;,; = 20 13 | 1dx2 = 1i.+1 [[[if]] = [Min(pgy — 1,sizeq — 1), Min(py—1,sizey — 1)] ]
10| size, = size, + 1 14 | *array;,,, = *array.,, [idx3] = [Min(pyg, sizeg), Pol
15 i, = 1. - 1 [sizeq] = [sizey, sizeq]

[5] Nazaré et al. Validation of memory accesses through symbolic analyses. OOPSLA, 2014. 28



Inference Approach oy

HONG KONG

Q2. How to infer the counting-related PM properties?
e Step 2: For each potential array, filter potential integer variables.

(b) Symbolic Range

entry:

[sizeg] = [sizeq, sizeg]
[oll = [Po, Pol

lip] = [sizeq — 1, sizeg — 1]

for.cond:
[ [i1] = [Min(py — 1, sizeq — 1), sizeg — 1] ] {*array P }
,F0
for.bhody: .
(L] = [po, sizea — 11 {*array sizey}

lidx] = [pg, sizey — 1]
lidx2] = [po + 1, sizey]
[iz] = [po — 1, sizeq — 2]

for.end:

[ lic]l = Min(po — 1,sizeg — 1), Min(po—1, sizeg — 1)]]
ltdx3] = [Min(po, sizeo), Pol
[size,] = [sizey, size,]

29



2

Inference Approach

Q2. How to infer the counting-related PM properties?

» Step 3: For each variable pair, validate if it satisfies the access
range invariant(s) through constraints solving.

* Invariant (INV') constraint:
/\ideR(ARR) [[ffl'ﬂ{‘]h < int

e To check the satisfaction across all possible values of int,
—INV

Satisfiable: Invariant unsatisfied
23 . . o
Unsatisfiable: Invariant satisfied for all values

- likely PM atomicity property 30
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Evaluation HONG KONG

e Using inferred PM atomicity property to discover bugs in PM data
structures.
e Persistent Adaptive Radix Tree (P-ART)
e Persistent BwTree (P-BwTree)
e Dynamic Hashing for PM (CCEH)
e Hash Indexing for PM (Level-hashing)

e Compared inference methods
 Dependency-based approaches: Witcher [SOSP '21], Huang et al. [ASE '24].
e Atomicity property inference for concurrent programs: MUVI [SOSP ’07].

31



2

Evaluation HONG KONG

e Using inferred PM atomicity property to discover bugs in PM
data structures.
 No bug detected by Huang el at.

PM Program | ID | New Code Description Impact MUVI | Witcher
1 v N4.cpp:117 Creating an array of valid nodes Fault or data loss
2 N4.cpp:22 Inserting a node to an array of children nodes Fault or data loss v
3 v Nl6.cpp:124 Creating an array of valid nodes Fault or data loss
P-ART 4 v N48.cpp:120 Creating an array of valid nodes Fault or data loss
5 v N256.cpp:81 Creating an array of valid nodes Fault or data loss
6 Nl6.cpp:13 Inserting a node to an array of children nodes Fault or data loss v
7 v Epoch.cpp:57 Adding to an array of fixed size arrays Fault or data loss v
P-BwTree 8 v bloom_filter.h: 143 Inserting an element to a “ValueType™ array | Stale read or data loss v
9 v CCEH_LSB.cpp:220 Resizing an array before insertions. Fault or data loss v
CCEH 10 v linear_probing.cpp:151 Resize a hash table Memory corruption
11 v extendible_hash.cpp:329 Resizing an array before insertions. Fault or data loss v
12 v cuckoo_hash.cpp:295 Resizing a “table™ array Memory corruption
[evel-Hashine 13 level_hashing.c:112 Expanding a level hash table Memory corruption v
=114 v level hashing.c:226 Shrinking a level hash table Corruption or data

* Analysis Time: < 1 second for each program
32
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S u m m a ry HONG KONG

e Observe a counting-related atomicity requirements for the crash
consistency of PM programs.

* Propose to use predictable read access range to encode the semantics
of counting-correlated variables.

e Design an inference approach based on symbolic analysis and SMT
constraint solving.

* Found 14 atomicity bugs (11 new) from PM programs using the
inferred properties.

vunmo.zhang@my.cityu.edu.hk 33
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