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Background - Persistent Memory
• Advantages of PM

• Byte-addressable access like DRAM (e.g., Intel Optane, CXL-SSD).
• Avoids storage stack overhead.

• Crash Consistency Challenge
• Writes are buffered and then flushed to the PM in arbitrary order.
• Programmers must use clflush/sfence or transaction interfaces 

(TXs) to ensure crash consistency, but this is error-prone.
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PM Crash Consistency
• For a sequential program, typical types of requirements for 

achieving consistent PM program states after crash include:

• Durability: A Store persists before the end of program.
• Ordering: A Store to 𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟1 persists before a Store to 𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟2.
• Atomicity: A set of Stores persist together (all or nothing).
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ST(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎);
 clflush(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎); 

ST & clflush(𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟1);
 sfence (); 
 ST & clflush(𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟2);

Tx_begin (); 
  ST (𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟1);
  ST (𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟2);
  Tx_end(); 

Durability Ordering Atomicity



PM testing tools are proposed…
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PM testing tools are proposed…

5
……

Testing Tool

Crash Consistency 
Oracles/PM property

Violations

Input Output
PM program/traces

program inputs



Specifying PM Property
• Method 1: User Annotation 

• PMTest[ASPLOS ’19], XFDetector[ASPLOS ’20], Agamotto[OSDI’20], 
PMDebugger[ASPLOS ’21].
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- Time-consuming and still error-prone.
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• Method 1: User Annotation 

• PMTest[ASPLOS ’19], XFDetector[ASPLOS ’20], Agamotto[OSDI’20], 
PMDebugger[ASPLOS ’21].

• Method 2: Persistency Model
• Strict Persistency
• Robustness: reducing persistency to memory consistency model.
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- Only provide ordering properties.



Specifying PM Property
• Method 1: User Annotation 

• PMTest[ASPLOS ’19], XFDetector[ASPLOS ’20], Agamotto[OSDI’20], 
PMDebugger[ASPLOS ’21].

• Method 2: Persistency Model
• Strict Persistency
• Robustness: reducing persistency to memory consistency model.

• Strict (PSan [PLDI ’22]), TSO (PMVerify [ASPLOS ’25]).
• Method 3: Inferring PM property

• Based on dependency patterns
• Witcher [SOSP ’21], Huang et al. [ASE ’24].
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- Time-consuming and still error-prone.

- Only provide ordering properties.

- Fail to infer critical atomicity 
properties without explicit 

dependency.

+ Covering part of Atomicity 
Properties



Counting-correlated Variables
• An example:

• childrenCount tracks the number of valid pairs of key and child pointer 
in a children node in persistent adaptive radix tree. 
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children

childrenCount



Counting-correlated Variables
• An example:

• childrenCount tracks the number of valid pairs of key and child pointer 
in a children node in persistent adaptive radix tree. 
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Tx_begin(); 

Tx_end(); 

They should be 
in the same TX

children

childrenCount



Counting-correlated Variables
• An example:

• childrenCount tracks the number of valid pairs of key and child pointer 
in a children node in persistent adaptive radix tree. 

• Without atomic persistence, upon a crash,
• partially persisting childrenCount leads to the return of dangling 

pointer
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Tx_begin(); 

Tx_end(); 

They should be 
in the same TX

children

childrenCount

Not yet 
persisted



Counting-correlated Variables
• An example:

• childrenCount tracks the number of valid pairs of key and child pointer 
in a children node in persistent adaptive radix tree. 

• Without atomic persistence, upon a crash,
• partially persisting childrenCount leads to the return of dangling 

pointer
• partially persisting children leads to data loss
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Tx_begin(); 

Tx_end(); 

They should be 
in the same TX

children

childrenCount



Counting-related Atomicity Property
• An atomic persistence requirement for variables with 

relationship between:
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container-like array(s) 

𝑖𝑖𝑖𝑖𝑖𝑖

integer variable(s) that 
tracks a numerical value 
about the logical size(s)

logical size



Counting-related Atomicity Property
• An atomic persistence requirement for variables with 

relationship between:
a) the container-like array(s) 
b) integer variable(s) that tracks a numerical value about the logical 
size(s) of array(s)

• Under three scenarios:
1) the logical size of an array
2) the sum of the logical sizes of multiple arrays
3) the complementary size of an array to a constant
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Counting-related Atomicity Property
• The atomic persistence requirement for variables with 

relationship between:
a) the container-like array(s) 
b) integer variable(s) that tracks a numerical value about the logical 
size(s) of array(s)

• Under three scenarios:
1) the logical size of an array
2) the sum of the logical sizes of multiple arrays
3) the complementary size of an array to a constant
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Prevalence of Counting Correlation
• Exist in many PM Data Structures, e.g.,

• Trees: child pointers array and its length/size of valid elements
• Ring buffers: buffer and its head/tail offsets
• Hash tables: table and its capacity

• Ever found bugs in other storage stacks
• btrfs: i_size mismatched with actual file size after fsync [1]
• ext4: i_disksize inconsistent with actual data size after crash [2]
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[1] patchwork.kernel.org/project/linux-btrfs/patch/1434541763-23753-1-git-send-email-fdmanana@kernel.org/, 2015.
[2] https://marc.info/?l=linux-ext4&m=151669669030547&w=2, 2018.



Why existing methods are limited
• Existing PM atomicity property inference efforts:

• Witcher [3], Huang et al. [4].
• Infer properties from control dependency patterns.
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Inter-control 
Dependency [4]

Multi-control  
Dependency [3]

[3] Fu et al. Witcher: Systematic crash consistency testing for non-volatile memory key-value stores. SOSP (2021).
[4] Huang et al. Discovering likely program invariants for persistent memory. ASE (2024).



Why existing methods are limited
• Existing PM atomicity property inference efforts:

• Witcher [3], Huang et al. [4].
• Infer properties from control dependency patterns.

19[3] Fu et al. Witcher: Systematic crash consistency testing for non-volatile memory key-value stores. SOSP (2021).
[4] Huang et al. Discovering likely program invariants for persistent memory. ASE (2024).

Dependency analysis hardly captures the behaviors of container-like variables, 
since they rarely act as “guardians” in conditionals.

Inter-control 
Dependency [4]

Multi-control  
Dependency [3]

children
𝑑𝑑𝑒𝑒𝑒𝑒

 childrenCount𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

？
𝑑𝑑𝑒𝑒𝑒𝑒

 children𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐



Main Idea
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Infer from dependency 
patterns?

Infer by dynamic 
statistics? (see paper)

Infer by directly 
capturing the 

semantics!



• Problem:
• Expressing the semantics of counting-

related variables is not 
straightforward.

• As the value of 𝑖𝑖𝑖𝑖𝑖𝑖 is not always equal 
to the logical size it is intended to 
represent throughout the program.

Main Idea
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Infer by directly 
capturing the 

semantics!

// inserting to an array with N elements

array’s logical size: N+1
size’s value: N



Our approach
Q1. How to capture the semantics of counting correlation?

• We observe the predictable access range behaviors of the 
counting-correlated variables, named as Access Range Invariants 
(predicates)

Q2. How to infer the counting-related PM properties? 
• Use symbolic analysis to extract access range behaviors.
• Validate the counting-correlated variables by SMT constraint 

solving.
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Our approach
Q1. How to capture the semantics of counting correlation?

• Observation: All reads to the container 𝐴𝐴𝐴𝐴𝐴𝐴 have address within 
the area restricted by the value of its logical size variable 𝑖𝑖𝑖𝑖𝑖𝑖.

• Because read behaviors encode the programmer’s intent for 
acquiring the valid elements in a container.
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// inserting to an array with N elements     

i: [p, size)

necessary 
condition



Our approach
Q1. How to capture the semantics of counting correlation?

• The read access range invariant (predicate) for scenario 1 is: 
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three scenarios:
1) the logical size of an array
2) the sum of the logical sizes of multiple arrays
3) the complementary size of an array to a constant

∀𝜌𝜌 ∈ 𝑃𝑃,𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝜌𝜌 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖  ⇒ 𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑖𝑖𝑖𝑖𝑡𝑡𝜌𝜌



Our approach
Q1. How to capture the semantics of counting correlation?

• The read access range invariant (predicate) for scenario 1 is: 

• Similarly, for scenario 2 (N ARRs),
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three scenarios:
1) the logical size of an array
2) the sum of the logical sizes of multiple arrays
3) the complementary size of an array to a constant

∀𝜌𝜌 ∈ 𝑃𝑃,𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝜌𝜌 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖  ⇒ 𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑖𝑖𝑖𝑖𝑡𝑡𝜌𝜌

∀ 𝜌𝜌 ∈  𝑃𝑃, �
𝑖𝑖∈ 1,𝑁𝑁 ∧ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜌𝜌(𝐴𝐴𝐴𝐴𝑅𝑅𝑖𝑖,𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖)

𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 < 𝑖𝑖𝑖𝑖𝑡𝑡𝜌𝜌



Our approach
Q1. How to capture the semantics of counting correlation?

• The read access range invariant (predicate) for scenario 1 is: 

• Similarly, for scenario 2 (N ARRs),

• For scenario 3,
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∀𝜌𝜌 ∈ 𝑃𝑃,𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝜌𝜌 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖  ⇒ 𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑖𝑖𝑖𝑖𝑡𝑡𝜌𝜌

three scenarios:
1) the logical size of an array
2) the sum of the logical sizes of multiple arrays
3) the complementary size of an array to a constant

∀ 𝜌𝜌 ∈  𝑃𝑃, �
𝑖𝑖∈ 1,𝑁𝑁 ∧ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜌𝜌(𝐴𝐴𝐴𝐴𝑅𝑅𝑖𝑖,𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖)

𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 < 𝑖𝑖𝑖𝑖𝑡𝑡𝜌𝜌

∀𝜌𝜌 ∈ 𝑃𝑃,𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝜌𝜌 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖  ⇒ 𝑖𝑖𝑖𝑖𝑖𝑖 < 𝐶𝐶 − 𝑖𝑖𝑖𝑖𝑡𝑡𝜌𝜌



Inference Approach
Q2. How to infer the counting-related PM properties? 

• Step 1: Exploit Symbolic Range Analysis [5] to extract symbolic 
values of all array access indices.

• Step 2: Filter out potential variables pairs/groups.
• Step 3: For each variable pair/group, validate if it satisfies the 

access range invariant (predicate) through constraint solving.

27[5] Nazaré et al. Validation of memory accesses through symbolic analyses. OOPSLA, 2014.



Inference Approach
Q2. How to infer the counting-related PM properties? 

• Step 1: Exploit Symbolic Range Analysis [5] to extract symbolic 
values of all array access indices.

28[5] Nazaré et al. Validation of memory accesses through symbolic analyses. OOPSLA, 2014.



Inference Approach
Q2. How to infer the counting-related PM properties? 

• Step 2: For each potential array, filter potential integer variables.
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{*array,p0}
{*array,size0}



Inference Approach
Q2. How to infer the counting-related PM properties? 

• Step 3: For each variable pair, validate if it satisfies the access 
range invariant(s) through constraints solving.

• Invariant (𝐼𝐼𝐼𝐼𝐼𝐼) constraint:

• To check the satisfaction across all possible values of 𝑖𝑖𝑖𝑖𝑖𝑖,
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∧𝑖𝑖𝑖𝑖𝑖𝑖∈𝑅𝑅(𝐴𝐴𝐴𝐴𝐴𝐴) < 𝑖𝑖𝑖𝑖𝑖𝑖

¬𝐼𝐼𝐼𝐼𝐼𝐼

Satisfiable: Invariant unsatisfied
Unsatisfiable: Invariant satisfied for all values
     → likely PM atomicity property 



Evaluation
• Using inferred PM atomicity property to discover bugs in PM data 

structures.
• Persistent Adaptive Radix Tree (P-ART)
• Persistent BwTree (P-BwTree)
• Dynamic Hashing for PM (CCEH)
• Hash Indexing for PM (Level-hashing)

• Compared inference methods
• Dependency-based approaches: Witcher [SOSP ’21], Huang et al. [ASE ’24].
• Atomicity property inference for concurrent programs: MUVI [SOSP ’07].
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Evaluation
• Using inferred PM atomicity property to discover bugs in PM 

data structures.
• No bug detected by Huang el at.

• Analysis Time: < 1 second for each program
32



Summary
• Observe a counting-related atomicity requirements for the crash 

consistency of PM programs.

• Propose to use predictable read access range to encode the semantics 
of counting-correlated variables.

• Design an inference approach based on symbolic analysis and SMT 
constraint solving.

• Found 14 atomicity bugs (11 new) from PM programs using the 
inferred properties.

33yunmo.zhang@my.cityu.edu.hk
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