
Yunmo Zhang1, Junqiao Qiu1, Hong Xu2, Chun Jason Xue3

1City University of Hong Kong 2Chinese University of Hong Kong 3MBZUAI

USENIX ATC 2025

Inferring Likely Counting-related Atomicity
Program Properties for Persistent Memory

Background - Persistent Memory
• Advantages of PM

• Byte-addressable access like DRAM (e.g., Intel Optane, CXL-SSD).
• Avoids storage stack overhead.

• Crash Consistency Challenge
• Writes are buffered and then flushed to the PM in arbitrary order.
• Programmers must use clflush/sfence or transaction interfaces

(TXs) to ensure crash consistency, but this is error-prone.

2

PM Crash Consistency
• For a sequential program, typical types of requirements for

achieving consistent PM program states after crash include:

• Durability: A Store persists before the end of program.
• Ordering: A Store to 𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟1 persists before a Store to 𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟2.
• Atomicity: A set of Stores persist together (all or nothing).

3

ST(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎);
 clflush(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎);

ST & clflush(𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟1);
 sfence ();
 ST & clflush(𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟2);

Tx_begin ();
 ST (𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟1);
 ST (𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟2);
 Tx_end();

Durability Ordering Atomicity

PM testing tools are proposed…

4……

From 2019 to 2025,

PM testing tools are proposed…

5
……

Testing Tool

Crash Consistency
Oracles/PM property

Violations

Input Output
PM program/traces

program inputs

Specifying PM Property
• Method 1: User Annotation

• PMTest[ASPLOS ’19], XFDetector[ASPLOS ’20], Agamotto[OSDI’20],
PMDebugger[ASPLOS ’21].

6

- Time-consuming and still error-prone.

Specifying PM Property
• Method 1: User Annotation

• PMTest[ASPLOS ’19], XFDetector[ASPLOS ’20], Agamotto[OSDI’20],
PMDebugger[ASPLOS ’21].

• Method 2: Persistency Model
• Strict Persistency
• Robustness: reducing persistency to memory consistency model.

• Strict (PSan [PLDI ’22]), TSO (PMVerify [ASPLOS ’25]).

7

- Time-consuming and still error-prone.

- Only provide ordering properties.

Specifying PM Property
• Method 1: User Annotation

• PMTest[ASPLOS ’19], XFDetector[ASPLOS ’20], Agamotto[OSDI’20],
PMDebugger[ASPLOS ’21].

• Method 2: Persistency Model
• Strict Persistency
• Robustness: reducing persistency to memory consistency model.

• Strict (PSan [PLDI ’22]), TSO (PMVerify [ASPLOS ’25]).
• Method 3: Inferring PM property

• Based on dependency patterns
• Witcher [SOSP ’21], Huang et al. [ASE ’24].

8

- Time-consuming and still error-prone.

- Only provide ordering properties.

- Fail to infer critical atomicity
properties without explicit

dependency.

+ Covering part of Atomicity
Properties

Counting-correlated Variables
• An example:

• childrenCount tracks the number of valid pairs of key and child pointer
in a children node in persistent adaptive radix tree.

9

children

childrenCount

Counting-correlated Variables
• An example:

• childrenCount tracks the number of valid pairs of key and child pointer
in a children node in persistent adaptive radix tree.

10

Tx_begin();

Tx_end();

They should be
in the same TX

children

childrenCount

Counting-correlated Variables
• An example:

• childrenCount tracks the number of valid pairs of key and child pointer
in a children node in persistent adaptive radix tree.

• Without atomic persistence, upon a crash,
• partially persisting childrenCount leads to the return of dangling

pointer

11

Tx_begin();

Tx_end();

They should be
in the same TX

children

childrenCount

Not yet
persisted

Counting-correlated Variables
• An example:

• childrenCount tracks the number of valid pairs of key and child pointer
in a children node in persistent adaptive radix tree.

• Without atomic persistence, upon a crash,
• partially persisting childrenCount leads to the return of dangling

pointer
• partially persisting children leads to data loss

12

Tx_begin();

Tx_end();

They should be
in the same TX

children

childrenCount

Counting-related Atomicity Property
• An atomic persistence requirement for variables with

relationship between:

13

container-like array(s)

𝑖𝑖𝑖𝑖𝑖𝑖

integer variable(s) that
tracks a numerical value
about the logical size(s)

logical size

Counting-related Atomicity Property
• An atomic persistence requirement for variables with

relationship between:
a) the container-like array(s)
b) integer variable(s) that tracks a numerical value about the logical
size(s) of array(s)

• Under three scenarios:
1) the logical size of an array
2) the sum of the logical sizes of multiple arrays
3) the complementary size of an array to a constant

14

𝑖𝑖𝑖𝑖𝑖𝑖

Counting-related Atomicity Property
• The atomic persistence requirement for variables with

relationship between:
a) the container-like array(s)
b) integer variable(s) that tracks a numerical value about the logical
size(s) of array(s)

• Under three scenarios:
1) the logical size of an array
2) the sum of the logical sizes of multiple arrays
3) the complementary size of an array to a constant

15

𝑖𝑖𝑖𝑖𝑖𝑖

Counting-related Atomicity Property
• The atomic persistence requirement for variables with

relationship between:
a) the container-like array(s)
b) integer variable(s) that tracks a numerical value about the logical
size(s) of array(s)

• Under three scenarios:
1) the logical size of an array
2) the sum of the logical sizes of multiple arrays
3) the complementary size of an array to a constant

16

𝑖𝑖𝑖𝑖𝑖𝑖

Prevalence of Counting Correlation
• Exist in many PM Data Structures, e.g.,

• Trees: child pointers array and its length/size of valid elements
• Ring buffers: buffer and its head/tail offsets
• Hash tables: table and its capacity

• Ever found bugs in other storage stacks
• btrfs: i_size mismatched with actual file size after fsync [1]
• ext4: i_disksize inconsistent with actual data size after crash [2]

17
[1] patchwork.kernel.org/project/linux-btrfs/patch/1434541763-23753-1-git-send-email-fdmanana@kernel.org/, 2015.
[2] https://marc.info/?l=linux-ext4&m=151669669030547&w=2, 2018.

Why existing methods are limited
• Existing PM atomicity property inference efforts:

• Witcher [3], Huang et al. [4].
• Infer properties from control dependency patterns.

18

Inter-control
Dependency [4]

Multi-control
Dependency [3]

[3] Fu et al. Witcher: Systematic crash consistency testing for non-volatile memory key-value stores. SOSP (2021).
[4] Huang et al. Discovering likely program invariants for persistent memory. ASE (2024).

Why existing methods are limited
• Existing PM atomicity property inference efforts:

• Witcher [3], Huang et al. [4].
• Infer properties from control dependency patterns.

19[3] Fu et al. Witcher: Systematic crash consistency testing for non-volatile memory key-value stores. SOSP (2021).
[4] Huang et al. Discovering likely program invariants for persistent memory. ASE (2024).

Dependency analysis hardly captures the behaviors of container-like variables,
since they rarely act as “guardians” in conditionals.

Inter-control
Dependency [4]

Multi-control
Dependency [3]

children
𝑑𝑑𝑒𝑒𝑒𝑒

 childrenCount𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

？
𝑑𝑑𝑒𝑒𝑒𝑒

 children𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Main Idea

20

Infer from dependency
patterns?

Infer by dynamic
statistics? (see paper)

Infer by directly
capturing the

semantics!

• Problem:
• Expressing the semantics of counting-

related variables is not
straightforward.

• As the value of 𝑖𝑖𝑖𝑖𝑖𝑖 is not always equal
to the logical size it is intended to
represent throughout the program.

Main Idea

21

Infer by directly
capturing the

semantics!

// inserting to an array with N elements

array’s logical size: N+1
size’s value: N

Our approach
Q1. How to capture the semantics of counting correlation?

• We observe the predictable access range behaviors of the
counting-correlated variables, named as Access Range Invariants
(predicates)

Q2. How to infer the counting-related PM properties?
• Use symbolic analysis to extract access range behaviors.
• Validate the counting-correlated variables by SMT constraint

solving.

22

Our approach
Q1. How to capture the semantics of counting correlation?

• Observation: All reads to the container 𝐴𝐴𝐴𝐴𝐴𝐴 have address within
the area restricted by the value of its logical size variable 𝑖𝑖𝑖𝑖𝑖𝑖.

• Because read behaviors encode the programmer’s intent for
acquiring the valid elements in a container.

23

// inserting to an array with N elements

i: [p, size)

necessary
condition

Our approach
Q1. How to capture the semantics of counting correlation?

• The read access range invariant (predicate) for scenario 1 is:

24

three scenarios:
1) the logical size of an array
2) the sum of the logical sizes of multiple arrays
3) the complementary size of an array to a constant

∀𝜌𝜌 ∈ 𝑃𝑃,𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝜌𝜌 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖 ⇒ 𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑖𝑖𝑖𝑖𝑡𝑡𝜌𝜌

Our approach
Q1. How to capture the semantics of counting correlation?

• The read access range invariant (predicate) for scenario 1 is:

• Similarly, for scenario 2 (N ARRs),

25

three scenarios:
1) the logical size of an array
2) the sum of the logical sizes of multiple arrays
3) the complementary size of an array to a constant

∀𝜌𝜌 ∈ 𝑃𝑃,𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝜌𝜌 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖 ⇒ 𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑖𝑖𝑖𝑖𝑡𝑡𝜌𝜌

∀ 𝜌𝜌 ∈ 𝑃𝑃, �
𝑖𝑖∈ 1,𝑁𝑁 ∧ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜌𝜌(𝐴𝐴𝐴𝐴𝑅𝑅𝑖𝑖,𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖)

𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 < 𝑖𝑖𝑖𝑖𝑡𝑡𝜌𝜌

Our approach
Q1. How to capture the semantics of counting correlation?

• The read access range invariant (predicate) for scenario 1 is:

• Similarly, for scenario 2 (N ARRs),

• For scenario 3,

26

∀𝜌𝜌 ∈ 𝑃𝑃,𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝜌𝜌 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖 ⇒ 𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑖𝑖𝑖𝑖𝑡𝑡𝜌𝜌

three scenarios:
1) the logical size of an array
2) the sum of the logical sizes of multiple arrays
3) the complementary size of an array to a constant

∀ 𝜌𝜌 ∈ 𝑃𝑃, �
𝑖𝑖∈ 1,𝑁𝑁 ∧ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝜌𝜌(𝐴𝐴𝐴𝐴𝑅𝑅𝑖𝑖,𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖)

𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 < 𝑖𝑖𝑖𝑖𝑡𝑡𝜌𝜌

∀𝜌𝜌 ∈ 𝑃𝑃,𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝜌𝜌 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑖𝑖𝑖𝑖𝑖𝑖 ⇒ 𝑖𝑖𝑖𝑖𝑖𝑖 < 𝐶𝐶 − 𝑖𝑖𝑖𝑖𝑡𝑡𝜌𝜌

Inference Approach
Q2. How to infer the counting-related PM properties?

• Step 1: Exploit Symbolic Range Analysis [5] to extract symbolic
values of all array access indices.

• Step 2: Filter out potential variables pairs/groups.
• Step 3: For each variable pair/group, validate if it satisfies the

access range invariant (predicate) through constraint solving.

27[5] Nazaré et al. Validation of memory accesses through symbolic analyses. OOPSLA, 2014.

Inference Approach
Q2. How to infer the counting-related PM properties?

• Step 1: Exploit Symbolic Range Analysis [5] to extract symbolic
values of all array access indices.

28[5] Nazaré et al. Validation of memory accesses through symbolic analyses. OOPSLA, 2014.

Inference Approach
Q2. How to infer the counting-related PM properties?

• Step 2: For each potential array, filter potential integer variables.

29

{*array,p0}
{*array,size0}

Inference Approach
Q2. How to infer the counting-related PM properties?

• Step 3: For each variable pair, validate if it satisfies the access
range invariant(s) through constraints solving.

• Invariant (𝐼𝐼𝐼𝐼𝐼𝐼) constraint:

• To check the satisfaction across all possible values of 𝑖𝑖𝑖𝑖𝑖𝑖,

30

∧𝑖𝑖𝑖𝑖𝑖𝑖∈𝑅𝑅(𝐴𝐴𝐴𝐴𝐴𝐴) < 𝑖𝑖𝑖𝑖𝑖𝑖

¬𝐼𝐼𝐼𝐼𝐼𝐼

Satisfiable: Invariant unsatisfied
Unsatisfiable: Invariant satisfied for all values
 → likely PM atomicity property

Evaluation
• Using inferred PM atomicity property to discover bugs in PM data

structures.
• Persistent Adaptive Radix Tree (P-ART)
• Persistent BwTree (P-BwTree)
• Dynamic Hashing for PM (CCEH)
• Hash Indexing for PM (Level-hashing)

• Compared inference methods
• Dependency-based approaches: Witcher [SOSP ’21], Huang et al. [ASE ’24].
• Atomicity property inference for concurrent programs: MUVI [SOSP ’07].

31

Evaluation
• Using inferred PM atomicity property to discover bugs in PM

data structures.
• No bug detected by Huang el at.

• Analysis Time: < 1 second for each program
32

Summary
• Observe a counting-related atomicity requirements for the crash

consistency of PM programs.

• Propose to use predictable read access range to encode the semantics
of counting-correlated variables.

• Design an inference approach based on symbolic analysis and SMT
constraint solving.

• Found 14 atomicity bugs (11 new) from PM programs using the
inferred properties.

33yunmo.zhang@my.cityu.edu.hk

	幻灯片编号 1
	Background - Persistent Memory
	PM Crash Consistency
	PM testing tools are proposed…
	PM testing tools are proposed…
	Specifying PM Property
	Specifying PM Property
	Specifying PM Property
	Counting-correlated Variables
	Counting-correlated Variables
	Counting-correlated Variables
	Counting-correlated Variables
	Counting-related Atomicity Property
	Counting-related Atomicity Property
	Counting-related Atomicity Property
	Counting-related Atomicity Property
	Prevalence of Counting Correlation
	Why existing methods are limited
	Why existing methods are limited
	Main Idea
	Main Idea
	Our approach
	Our approach
	Our approach
	Our approach
	Our approach
	Inference Approach
	Inference Approach
	Inference Approach
	Inference Approach
	Evaluation
	Evaluation
	Summary

