USENIX ATC 2025

Inferring Likely Counting-related Atomicity

Program Properties for Persistent Memory

Yunmo Zhang!, Jungiao Qiu!, Hong Xu?, Chun Jason Xue?3

1City University of Hong Kong “Chinese University of Hong Kong 3MBZUAI

iy

BEEHHAE
City University of Hong Kong

o’
c.\ MOHAMED BIN ZAYED
:,4 UNIVERSITY OF

ARTIFICIAL INTELLIGENCE

2

Background - Persistent Memory

* Advantages of PM
e Byte-addressable access like DRAM (e.g., Intel Optane, CXL-SSD).
e Avoids storage stack overhead.

e Crash Consistency Challenge
e Writes are buffered and then flushed to the PM in arbitrary order.

e Programmers must use clflush/sfence or transaction interfaces
(TXs) to ensure crash consistency, but this is error-prone.

PM Crash Consistency @

* For a sequential program, typical types of requirements for
achieving consistent PM program states after crash include:

e Durability: A Store persists before the end of program.
e Ordering: A Store to addry persists before a Store to addr,.
e Atomicity: A set of Stores persist together (all or nothing).

Durability Ordering Atomicity
. Tx_begin ();
STTadd) gljncct‘c()l.us'"(“ddm' STF (ol
clflush(addr); ’ ST (addry);

ST&C-L'F-LU.Sh(addrz),' Tx end()'

PM testing tools are proposed...

2

HONG KONG

From 2019 to 2025,

PMTest: A Fast and Flexible Testing Framework for

Fast, Flexible, and Comprehensive Bug Detection for Persistent

Memory Programs

Bang Di Jiawen Liu

Persistent Memory Programs

Jaaru: Efficiently Model Checking Persistent Memory Programs

Sihang Liu Yizhou Wei Jishen Zhao Aasheesh Kolli Samira K}

University of Virginia University of Virginia UC San Diego Penn mSk}’
— AGAMOTTO: How Persistent is your Persistent Memory Application? ifornia, Irvine

Mumak: Efficient and Black-Box Bug Detection for uci edu

. Ben Reeves Ben Stoler
Persistent MemOI‘Y University of Michigan University of Michigan
Jodio Gongalves Miguel Matos RodrigoRo{ Checking Robustness to Weak Persistency Models
Instituto Superjor Técnico Instituto Superior Téenico Instituto Superj

. . 3 : orjiara Guoqing Harry Xu Brian Demsky

] WITCHER' SYStematlc CraSh ConSIStency Te Stlng for Luo University of California, Los Angeles University of California, Irvine
116 A 11S A

Non-Volatile Memory Key-Value Stores
Xinwei Fu Wook-Hee Kim

Stony Brook University

Sunny Wadkar Dongyoon Lee Changwoo Min
Virginia Tech Stony Brook University Virginia Tech

Robustness Verification for Checking Crash

Ajay Paddayuru Mohannad I
Virginia Tech Virginia Tech Shreepathi Virginia Te

Consistency of Non-volatile Memory

Zhilei Han Fei He
School of Software School of Software
Tsinghua University Tsinghua University

2

PM testing tools are proposed...

Input Output

PM program/traces

| ___program inputs __ | {Testing Tool} <@’)
Crash Consistency Violations

Oracles/PM property

Specifying PM Property f@

e Method 1: User Annotation - Time-consuming and still error-prone.

e PMTest[ASPLOS "19], XFDetector[ASPLOS "20], Agamotto[OSDI’20],
PMDebugger[ASPLOS "21].

Specifying PM Property (M

e Method 1: User Annotation - Time-consuming and still error-prone.

e PMTest[ASPLOS ’19], XFDetector[ASPLOS "20], Agamotto[OSDI’20],
PMDebugger[ASPLOS "21].

 Method 2: Persistency Model - Only provide ordering properties.
e Strict Persistency

e Robustness: reducing persistency to memory consistency model.
e Strict (PSan [PLDI ’22]), TSO (PMVerify [ASPLOS ’25]).

Specifying PM Property M

e Method 1: User Annotation - Time-consuming and still error-prone.

e PMTest[ASPLOS "19], XFDetector[ASPLOS "20], Agamotto[OSDI’20],
PMDebugger[ASPLOS "21].

* Method 2: Persistency Model - Only provide ordering properties.
e Strict Persistency

e Robustness: reducing persistency to memory consistency model.
e Strict (PSan [PLDI ’22]), TSO (PMVerify [ASPLOS '25]).

* Method 3: Inferring PM property + Covering part of Atomicity
Properties

. Ba.sed on dependency patterns - Fail to infer critical atomicity
* Witcher [SOSP "21], Huang et al. [ASE '24]. properties without explicit

dependency. 8

2

Counting-correlated Variables

* An example:

e childrenCount tracks the number of valid pairs of key and child pointer
in a children node in persistent adaptive radix tree.

109 N4::getChildren (...) { childrenCount

116 ——

117 children|childrenCount]| = std::make tuple(key, child); :

118 childrenCount++; DD children
119

} 9

2

Counting-correlated Variables

* An example:

e childrenCount tracks the number of valid pairs of key and child pointer
in a children node in persistent adaptive radix tree.

. . : childrenCount
109 N4..getCh11dre.:n (..) 4 They should be
116 Ix_begM in the same TX
117 children|childrenCount| = std::make tuple(key, child); :
118 childrenCount++* DD children
119 Tx_end();

)

10

2

Counting-correlated Variables

* An example:

e childrenCount tracks the number of valid pairs of key and child pointer

in a children node in persistent adaptive radix tree.
* Without atomic persistence, upon a crash,

e partially persisting childrenCount leads to the return of dangling

pointer

109 N4::getChildren (...) { childrenCount

o . They should be
116 Ix_begin(); in the same TX

119 Tx_end();

} Not yet
persisted

117 children|childrenCount| = std::make tuple(key, child); \ 7 :
118 childrenCount++; ” D children
AN

11

2

Counting-correlated Variables

* An example:

e childrenCount tracks the number of valid pairs of key and child pointer
in a children node in persistent adaptive radix tree.

* Without atomic persistence, upon a crash,

e partially persisting childrenCount leads to the return of dangling
pointer

e partially persisting children leads to data loss
109 N4::getChildren (...) {

childrenCount

o . They should be
116 Ix_begin(); in the same TX

A
117 children|childrenCount| = std::make tuple(key, child); :
118 childrenCount++; ”’D children
12

119 Tx_end();

2

Counting-related Atomicity Property .owxon

* An atomic persistence requirement for variables with
relationship between:

logical size
BE8 int
container-like array(s) integer variable(s) that

tracks a numerical value
about the logical size(s)

13

2

Counting-related Atomicity Property .owxon

* An atomic persistence requirement for variables with
relationship between:
a) the container-like array(s)

b) integer variable(s) that tracks a numerical value about the logical
size(s) of array(s)
int

e Under three scenarios: ...D

1) the logical size of an array

14

2

Counting-related Atomicity Property .owxon

* The atomic persistence requirement for variables with
relationship between:

a) the container-like array(s)
b) integer variable(s) that tracks a numerical value about the logical

size(s) of array(s) int
J \
* Under three scenarios: | R | B

2) the sum of the logical sizes of multiple arrays

15

2

Counting-related Atomicity Property .owxon

* The atomic persistence requirement for variables with
relationship between:

a) the container-like array(s)

b) integer variable(s) that tracks a numerical value about the logical
size(s) of array(s)
int

T
e Under three scenarios: B8)

3) the complementary size of an array to a constant

16

2

Prevalence of Counting Correlation .ouwone

e Exist in many PM Data Structures, e.g.,

* Trees: child pointers array and its length/size of valid elements
e Ring buffers: buffer and its head/tail offsets
e Hash tables: table and its capacity

e Ever found bugs in other storage stacks
e btrfs: i_size mismatched with actual file size after fsync [1]
e ext4: i_disksize inconsistent with actual data size after crash [2]

[1] patchwork.kernel.org/project/linux-btrfs/patch/1434541763-23753-1-git-send-email-fdmanana@kernel.org/, 2015.
[2] https://marc.info/?|=linux-ext4&mM=151669669030547&w=2, 2018.

Why existing methods are limited

e Existing PM atomicity property inference efforts:
* Witcher [3], Huang et al. [4].
* Infer properties from control dependency patterns.

Multi-control

Inter-control

Dependency [3] Dependency [4]
: ctrl : ctrl
Dependency Pattern if (x) then m--- (mgx) if (x) then y--- (ygx)
if (y) then n--- (nﬂy) if(y) then x--- (xLﬂ)y)
dep dep
Inferred Likely

Atomicity Property

ATOMICITY(x, V)

ATOMICITY(x, V)

[3] Fu et al. Witcher: Systematic crash consistency testing for non-volatile memory key-value stores. SOSP (2021).

[4] Huang et al. Discovering likely program invariants for persistent memory. ASE (2024).

2

HONG KONG

18

Why existing methods are limited

2

e Existing PM atomicity property inference efforts:

* Witcher [3], Huang et al. [4].

* Infer properties from control dependency patterns.

109
116
117
118
119

N4::getChildren (...) { MUlti'contrOl
ghildren[childrenCount] = std::make_tuple(key, child); Dependency [3]

childrenCount++;

Inter-control
Dependency [4]

if (x) then m--- (mﬂ)x)

if (x) then y--- (yhy)
dep

ctrl

if (y) then x--- (x—>vy)
dep

) dep
1 ot
. i (
A 2 children childrenCount 7Y)
99 for (uint32 t1=0; 1 <childrenCount; ++1) e ‘
100 const N *n = std::get<1>(children[i]); [
101) ﬁ ? <% children
} dep

Dependency analysis hardly captures the behaviors of container-like variables,
since they rarely act as “guardians” in conditionals.

Main Idea

Infer from dependency
patterns?

Infer by dynamic
statistics? (see paper)

P

HONG KONG

O

Infer by directly

capturing the
semantics!

20

Main Idea f@

* Problem:

e Expressing the semantics of counting- or
related variables is not =
straightforward.

* As the value of int is not always equal Infer by directly
to the logical size it is intended to capturing the
represent throughout the program. semantics!

// inserting to an array with N elements p
for(i = size - 1; 1 >= p; 1i--){
array[i + 1] = arrayl([i]; array'’s logical size: N+1

} size’s value: N
array[pl] = 20;

6 size += 1;

N N (98] [R] —

21

2

Our approach

Q1. How to capture the semantics of counting correlation?

 We observe the predictable access range behaviors of the
counting-correlated variables, named as Access Range Invariants
(predicates)

Q2. How to infer the counting-related PM properties?
e Use symbolic analysis to extract access range behaviors.

 Validate the counting-correlated variables by SMT constraint
solving.

22

Our approach Em

Q1. How to capture the semantics of counting correlation?

 Observation: All reads to the container ARR have address within
the area restricted by the value of its logical size variable int.\[MISEREEI }

condition
e Because read behaviors encode the programmer’s intent for
acquiring the valid elements in a container.

.« // inserting to an array with N elements
for(i = size - 1; 1 >= p; 1i--){
3 array([i + 1] = arrayl[i];

i)
5 array[pl] = 20; \Qil.[p,sue) J

6 size += 1;

23

2

Our approach

Q1. How to capture the semantics of counting correlation?
 The read access range invariant (predicate) for scenario 1 is:

Vp € P,Read, (ARR,idx) = idx < int,

three scenarios:
1) the logical size of an array

24

2

Our approach

Q1. How to capture the semantics of counting correlation?
 The read access range invariant (predicate) for scenario 1 is:

Vp € P,Read, (ARR,idx) = idx < int,
e Similarly, for scenario 2 (N ARRs),

VpE€E P, z idx; < int,
IE[1,N]A Readp(ARR;,idx;)

three scenarios:

2) the sum of the logical sizes of multiple arrays

25

| Ourapproach

Q1. How to capture the semantics of counting correlation?
 The read access range invariant (predicate) for scenario 1 is:

Vp € P,Read, (ARR,idx) = idx < int,
e Similarly, for scenario 2 (N ARRs),

VpE€E P, z idx; < int,
IE[1,N]A Readp(ARR;,idx;)
* For scenario 3,

Vp € P,Read,(ARR,idx) = idx < C — int,

three scenarios:

3) the complementary size of an array to a constant

2

HONG KONG

26

2

Inference Approach

Q2. How to infer the counting-related PM properties?

e Step 1: Exploit Symbolic Range Analysis [5] to extract symbolic
values of all array access indices.

e Step 2: Filter out potential variables pairs/groups.

e Step 3: For each variable pair/group, validate if it satisfies the
access range invariant (predicate) through constraint solving.

LLVM LLVIM Prodram
% frontend q g
For eac h

For eac :
(Step1)) array((Step2)Candidate | pair | (Step 3) Invariant Counting-related
Symbolic Range Variable Pairs Validation with Atomicity Property

Generation J Generation SMT Solver

[5] Nazaré et al. Validation of memory accesses through symbolic analyses. OOPSLA, 2014. 27

| Inference Approach oy

HONG KONG

Q2. How to infer the counting-related PM properties?

e Step 1: Exploit Symbolic Range Analysis [5] to extract symbolic
values of all array access indices.

(a) Control Flow Graph (b) Symbolic Range
entry: entry:
1 SEC0 = f [sizeg] = [sizey, sizeg]
220 = [P0l = [Po. Pol
3| 107 sizepl Lio] = [sizey — 1, sizeg — 1]
}
for.cond- for.cond: . :
4| 1= ¢(i, iy [[i;] = [Min(py — 1,sizey — 1), sizey — 1]]
5 t =1, > py
6 br(t, for.body, for.end) forbody.
lic] = [po, sizeg — 1]]
/ \ [idx] = [pg, sizeg — 1]
lidx2] = [po + 1, sizeg]
for.end: for.body: lizl = [po — 1, sizeg — 2]
7| is = o(i) 1| i. = o(i)
8| id=3 = p, 12 | idx = 1. forend:
9| *array;,; = 20 13 | 1dx2 = 1i.+1 [[[if]] = [Min(pgy — 1,sizeq — 1), Min(py—1,sizey — 1)]]
10| size, = size, + 1 14 | *array;,,, = *array.,, [idx3] = [Min(pyg, sizeg), Pol
15 i, = 1. - 1 [sizeq] = [sizey, sizeq]

[5] Nazaré et al. Validation of memory accesses through symbolic analyses. OOPSLA, 2014. 28

Inference Approach oy

HONG KONG

Q2. How to infer the counting-related PM properties?
e Step 2: For each potential array, filter potential integer variables.

(b) Symbolic Range

entry:

[sizeg] = [sizeq, sizeg]
[oll = [Po, Pol

lip] = [sizeq — 1, sizeg — 1]

for.cond:
[[i1] = [Min(py — 1, sizeq — 1), sizeg — 1]] {*array P }
,F0
for.bhody: .
(L] = [po, sizea — 11 {*array sizey}

lidx] = [pg, sizey — 1]
lidx2] = [po + 1, sizey]
[iz] = [po — 1, sizeq — 2]

for.end:

[lic]l = Min(po — 1,sizeg — 1), Min(po—1, sizeg — 1)]]
ltdx3] = [Min(po, sizeo), Pol
[size,] = [sizey, size,]

29

2

Inference Approach

Q2. How to infer the counting-related PM properties?

» Step 3: For each variable pair, validate if it satisfies the access
range invariant(s) through constraints solving.

* Invariant (INV') constraint:
/\ideR(ARR) [[ffl'ﬂ{‘]h < int

e To check the satisfaction across all possible values of int,
—INV

Satisfiable: Invariant unsatisfied
23 . . o
Unsatisfiable: Invariant satisfied for all values

- likely PM atomicity property 30

2

Evaluation HONG KONG

e Using inferred PM atomicity property to discover bugs in PM data
structures.
e Persistent Adaptive Radix Tree (P-ART)
e Persistent BwTree (P-BwTree)
e Dynamic Hashing for PM (CCEH)
e Hash Indexing for PM (Level-hashing)

e Compared inference methods
 Dependency-based approaches: Witcher [SOSP '21], Huang et al. [ASE '24].
e Atomicity property inference for concurrent programs: MUVI [SOSP ’07].

31

2

Evaluation HONG KONG

e Using inferred PM atomicity property to discover bugs in PM
data structures.
 No bug detected by Huang el at.

PM Program | ID | New Code Description Impact MUVI | Witcher
1 v N4.cpp:117 Creating an array of valid nodes Fault or data loss
2 N4.cpp:22 Inserting a node to an array of children nodes Fault or data loss v
3 v Nl6.cpp:124 Creating an array of valid nodes Fault or data loss
P-ART 4 v N48.cpp:120 Creating an array of valid nodes Fault or data loss
5 v N256.cpp:81 Creating an array of valid nodes Fault or data loss
6 Nl6.cpp:13 Inserting a node to an array of children nodes Fault or data loss v
7 v Epoch.cpp:57 Adding to an array of fixed size arrays Fault or data loss v
P-BwTree 8 v bloom_filter.h: 143 Inserting an element to a “ValueType™ array | Stale read or data loss v
9 v CCEH_LSB.cpp:220 Resizing an array before insertions. Fault or data loss v
CCEH 10 v linear_probing.cpp:151 Resize a hash table Memory corruption
11 v extendible_hash.cpp:329 Resizing an array before insertions. Fault or data loss v
12 v cuckoo_hash.cpp:295 Resizing a “table™ array Memory corruption
[evel-Hashine 13 level_hashing.c:112 Expanding a level hash table Memory corruption v
=114 v level hashing.c:226 Shrinking a level hash table Corruption or data

* Analysis Time: < 1 second for each program
32

2

S u m m a ry HONG KONG

e Observe a counting-related atomicity requirements for the crash
consistency of PM programs.

* Propose to use predictable read access range to encode the semantics
of counting-correlated variables.

e Design an inference approach based on symbolic analysis and SMT
constraint solving.

* Found 14 atomicity bugs (11 new) from PM programs using the
inferred properties.

vunmo.zhang@my.cityu.edu.hk 33

	幻灯片编号 1
	Background - Persistent Memory
	PM Crash Consistency
	PM testing tools are proposed…
	PM testing tools are proposed…
	Specifying PM Property
	Specifying PM Property
	Specifying PM Property
	Counting-correlated Variables
	Counting-correlated Variables
	Counting-correlated Variables
	Counting-correlated Variables
	Counting-related Atomicity Property
	Counting-related Atomicity Property
	Counting-related Atomicity Property
	Counting-related Atomicity Property
	Prevalence of Counting Correlation
	Why existing methods are limited
	Why existing methods are limited
	Main Idea
	Main Idea
	Our approach
	Our approach
	Our approach
	Our approach
	Our approach
	Inference Approach
	Inference Approach
	Inference Approach
	Inference Approach
	Evaluation
	Evaluation
	Summary

