ACM ICS 2025

PIE: Enabling Fast and Scalable Incremental

Evolving Graph Analytics on Persistent Memory

Yunmo Zhang, Jiacheng Huang, Xizhe Yin,
Jungiao Qiu, Hong Xu' Chun Jason Xue'

(qw [T RIVERSIDE

R PN -

City University of Hong Kong The Chinese University of Hong Kong

o’
‘l\ MOHAMED BIN ZAYED
}{o UNIVERSITY OF

ARTIFICIAL INTELLIGENCE

Evolving Graph Analytics IM

e Real-world graphs evolve continuously
over time
o With A; = {A], A7)
e Track a graph property by evaluating
the query on a sequence of snapshots
within a time window

e Have many applications G G, G,

e |n social network, fraud detection,
bioinformatics, network management, etc.

2

Evolving Graph Analytics
e Real-world graphs evolve continuously
over time QG ¥ 0G) } 06}
o With A; = {A}, A7}
* Track a graph property by evaluating R f‘jf;;}g;z | ;
the query on a sequence of snapshots = =#= < == = ==
G, G, G,

within a time window

e Have many applications
e |n social network, fraud detection,

bioinformatics, network management, etc.

Network
Administrator dah

Evolving Graph Analytics Approaches 1@

* A naive method: re-computing
e Full evaluation of each snapshot from scratch

Initial

Results -:l

Evolving Graph Analytics Approaches 1@

* Incremental Analysis

e Reuse results from the previous snapshot.
e Naiad [SOSP’13], Tornado [SIGMOD’16], Kickstarter [ASPLOS’17]

Step 1: Identify effects
of A™.

Step 2: Process AT and
re-converge on the
new snapshot.

Initial

o

Results -:l

Evolving Graph Analytics Approaches @

* Deletion-free Incremental Analysis: CommonGraph [ASPLOS’ 23]

e Avoid processing the expensive
deletions by starting from the
results of the common graph
across snapshots (G,).

e Build the triangle grid (TG) of
interm. common graphs (ICG) to
further shared results.

* Follow the computed schedule
(path along the interm. deltas) to
maximize sharing.

Common Graph

2

Large-scale Evolving Graph Systems ouwione

Application

. &

D, ‘o

NSEG o, O
CQQQb/ \%’5
&

SSD/Disk | — DRAM
Retrieval

Traditional Evolving
Graph System

2

Large-scale Evolving Graph Systems ouwione

Application +/ Data Persistence

NG Y
G Qb/ Ly . .
N Q) «/ Low latency, high density
PM

«/ Byte Addressable

PM-based Evolving
Graph System

Existing PM-based Evolving Graph Systems.

* Have explored porting different graph formats to PM

Vo [{1, 2,3} [{-3}

Vl {3’ 4} >

{-3}

Vo ({1} >

{3}

V3 | {2} [—

{O’ '2}

Lr
........
........................
g 0 LN
.........

..........
............
......................
..........
....................

2

ONG KONG

Vs | {8} g

{0}

Adjacency Lists

XPGraph [MICRO 22]

PMA (Mutable CSR)

DGAP [SC ‘23]

PM Performance Characteristics:

1. Performance gap with DRAM
(2~3x lower max. READ bandwidth and 7~8x lower max. WRITE bandwidth)

2. Bandwidth drop for small random accesses
(e.g., <256 bytes in Optane PM)

—— o g —— -

|
Hierarchical Lo ! {-3} {-3}i{3}}| = | {0},
AT AR e W
Buffer L, - |10, -2} JeN
DRAM p GVOUij”ebf-
PM Vo | {1, 2,3} | {-3} flush " “"V - ""V V
Vi ({3, 4} —{{-3) T T T
ol o [o [10]ss[36] DRAM
vy [{2} |——{ {0,-2) T e PM
v, [{3) 112{3|3 3(4|3| |1({3|2(0]|2| |3{0]|2(0
Adjacency Lists PMA (Mutable CSR)

XPGraph [MICRO ‘22] DGAP [SC ‘23] 10

PM Performance Characteristics:

1. Performance gap with DRAM
(2~3x lower max. READ bandwidth and 7~8x lower max. WRITE bandwidth)

2. Bandwidth drop for small random accesses
(e.g., <256 bytes in Optane PM)

Problem
Existing PM-based evolving graph systems do not
support efficient incremental analysis.

XPGraph [MICRO 22] DGAP [SC 23]

MOtivatiOn HONG KONG

* Integrat Kickstarter into SOTA PM-based graph systemes.
e Port CommonGraph directly to PM (CG-PM)

(a) Analytics (b) Ingestion
B Original (Recomp) @w/ Kickstarter BDGAP oXPGraph @CG-PM
— 10190.5 better N 12
£10000 8560.6 ﬂ O Iy better
S = 10
@ g 8.7
£ 1000 = —— o g4 76 7.9 74
@ 375.5 317.7 - .
=] - 6.2
P 100 = — 77.5 g 6
g‘ || || G.)
© a 4
B B :
=
o)
1 D.J
£ 0
XPGraph DGAP CG-PM 12

A K QK

2

MOtivatiOn HONG KONG

* Integrat Kickstarter into SOTA PM-based graph systemes.
e Port CommonGraph directly to PM (CG-PM)

Even a direct port of CommonGraph to PM exhibits
better analytics performance and comparable
ingestion performance compared to SOTA.

2

MOtivatiOn HONG KONG

* Integrat Kickstarter into SOTA PM-based graph systems.
e Port CommonGraph directly to PM (CG-PM)

However, directly porting CommonGraph to PM
suffers from high read/write amplifications and
extra computations, making it far from optimal.

2

Issues of CommonGraph on PM

Issue 1: High Write i Issue 2: High Read Issue 3: Extra
Amplification Amplification . Computations
B Store Delta BAnalysis BAnalysis
60 o Build TG ' 40 @ Compute Ge ; 20 o Calculate Deltas
» 50 g S 16
g 2 30 5 1.7x
S 40 S o
@ S22 4, & 12
% 30 7 4x o 20 X 1.8x GE)
E 20 7.3x E 15 __ s 8
10 — A
10 .
» L E 0o L= _ 0
SK TWM SK TWM SK

15

Issues of CommonGraph on PM

| Issue 1: High Write
Amplification
B Store Delta
50 B Build TG
’g 50
§ 40
(b}
% 30 7.4x
E 20 7.3x
10
, L E
SK TWM

2

 Maintaining the common graph upon
ingestion requires updating the base
graph CSR stored in PM.

* |t causes small random writes.

0(3|5 0|3(5|6|7 0
NHBEER " =t HEEEEL \===SE

 Base Graph G, G. of {Gy, Gy} G, of {Go, Gy, Gy)
(Evolving) Common Graph CSR
16

Issues of CommonGraph on PM

Issue 1: High Write
Amplification

c
8 40

B Store Delta
OBuild TG

74X

7.3X

2

 Maintaining the common graph upon
ingestion requires updating the base
graph CSR stored in PM.

* |t causes small random writes.

* Intermediate deltas A%rare required

for constructing TG (including
snapshots), resulting in additional PM
writes.

17

Issues of CommonGraph on PM

Issue 2: High Read
Amplification

Issue 1: High Write
Amplification

B Store Delta
60 OBuild TG

~— 30 74X
c 7.3X

w
a

w
(@]

Time (seconds)
N N
o O,

N
(@)

BAnalysis
dCompute Gec

3.2X

||‘

SK TWM

2

Issue 3: Extra

Computations
i BAnalysis

| 20 O Calculate Deltas
3

i 516 1.7x

H:

L8 12

g

4

0

| SK

18

2

Issues of CommonGraph on PM

 Calculating G, requires expensive set intersection operations.

* |t causes additional reads from PM, which are random reads
when using binary search.

lA{?{3—>2,4—>0}

4
/
Vo V1 V, V3 V, 01 Vo V1 Vo V3 V,
<=
013|5]|6|7 0[3[5|6|7
112]-|-14]1(2]8] = 112]-1-14|1]-|3

(Evolving) Common Graph CSR
19

Issues of CommonGraph on PM

e Computing the optimal schedule
requires building a complete TG.

* This involves N(N — 1) set intersections
to calculate the IR deltas, for snapshots

(Go, ., Gy).

Issue 3: Extra

2

HONG KONG

Computations
B Analysis
20 O Calculate Deltas
)
510 17«
o
@ 12
£
= 8
4
0
SK

Solutions

Issue 1: High Write
Amplification

Bitmap
17/1T(0]10|1J1]10]1
DRAM -
PM
Graph Data

Solution 1: Detached
Logical Graph View

Issue 2: High Read
Amplification

High Degree Neigh.

Solution 2: Chunked
Neighbor Index

2

HONG KONG

Issue 3: Extra
Computations

Solution 3: Streamlined
Incremental Analysis

21

PIE: PM-based Evolving Graph System f-ﬂ

* An evolving graph storage and analytics system
* System Overview

Graph i Scheduling-Free Analytics Engine "9
- . . _ - =
Query Q "iT" [+ LCG-driven Streamlined Inc. Analysis 8 23
| i o N
852 Refer to the
o =8 8
This talk i| 1 Storage System oo paper
1 ==y s =Y -0 1 (‘)O
i Logic Graph View l L O
1 % Snapshots (G;) G. < Deltas AY/"! = =
""""""""""""""""" Q &
1 3
Physical Storage ﬂ« >
PM DRAM B
»Base Graph ~ Liveness Bitmap(s) <
»Delta Batches » Chunked Nebr Index 73

Batches As » Time
7))

PIE: Storage System 1@

 Graph data are totally stored in PM.

* Hybrid delta format

e Deltas are represented by CSRs in most cases.

e Deltas are stored as edge list in PM when vertex array >> edge
array, its CSR is rebuilt in DRAM at runtime.

319 csriat)
PT\/I ______ ;O_vf_ v; \73 V, Vo V1 o, Vs Vy Vs V4
0|3|5]6[7 0|1 _ L ..]o|1 0|1
............... T v P13
11213(3/4|1]2]3 3|3 Va1o| | |2]o 0|2
__________________ d

Go AT LAY LA A% 23

PIE: Detached Logical Graph View 1@

e The graph view of G. and components in TG are logically
provided to the deletion-free incremental analysis.
* The logical is separated from the graph storage by bitmaps.
* |t requires NO additional PM writes.

Common Graph G, (Intermediate) Deltas

DRAM G.Bitmap
PT\/I _____ ;O_VT-V; \73_\/4_ B : VO VT V3 V4 V3 V4 :
ol3|sl6|7 {01 0l1 0f1
................ Vs 3
11213|3]4]1]2]3 13]3 Vario| |2lo] |02

Go N A} L 24

PIE: Detached Logical Graph View @

* The logical graph view is feasible due to our observation for
the relationship between TG components and graph data.

* G is included by the base graph stored in PM (G, = ICGg y)

J
ICGy; = Gy - Z AT
k=1

Graph Data
* IR deltas are included by the ingested deltas in PM |15 components

j—1 J
I _ A-— E : +, ro_ A+ E : —
k=i k=i+1

25

PIE: Chunked Neighbor Index f@

e Chunked neighbor index is built in DRAM for high-degree
vertices in Gy.

* The neighbors are segmented into chunks of the buffer size, e.g.,
2568B.

e A binary tree (stored as an array) is built with the pivot value of
each chunk as the leaf node to accelerate search.

Chunked
Neighbor Index

DRAM _ _ cooolooosis oo LT
PM 1| ... |278|366| ... [505 | 598 | ... | 788 | 801 | ... | 982
Offsets in 0 63 64 127 128 191 192 255
neighbors

256B
(Buffer size)

neighbors of a high-degree vertex 26

PIE: Chunked Neighbor Index f@

e Chunked neighbor index is built in DRAM for high-degree
vertices in Gy.

* A leaf node position in the array directly indicates the position of
the chunk containing the target of a search.

e A search on a neighbor in G, requires one PM media access.

Chunked
Neighbor Index

DRAM _ _ cooolooosis oo LT
PM 1| ... |278|366| ... [505 | 598 | ... | 788 | 801 | ... | 982
Offsets in 0 63 64 127 128 191 192 255
neighbors

256B
(Buffer size)

neighbors of a high-degree vertex 27

o

PIE: Storage System Summary

»Base Graph > Liveness Bitmap(s)
»Delta Batches »Chunked Nebr Index

Graph Update-—--- t'"“'""'t':ﬂ; """"" T‘ """""" :I =

Batches As > Time

durable linearizability

Graph Scheduling-Free Analytics Engine "o
. . . Query Q » LCG-driven Streamlined Inc. Analysis <:| é g §
No Write Amplification @ $o ¥
I e =3
: ge System O
T |l Rl — IBEE
Low Read Amplification | |1 Legic Grap HE R
i| | Snapshots (G;) G. % Deltas AU/ =
1] | = s = - —— tg <
i Physical Storage !<:| i
Crash Consistency--buffered | PV DRAM 3
| B,
I o

7)Q

2

PIE: Streamlined Incremental Analysis ocxone

e A scheduling-free design

* Instead of building a complete TG, we only only focus on the
schedule path that goes through ICGs that are historical common
graph.

® ¢
<:| <:|<:| @@

(Historical) Common graph
of snapshots in [0, i]
29

2

PIE: Streamlined Incremental Analysis ocxone

e A scheduling-free design

e Lasting Common Graph (LCG)-driven deletion-free incremental
analysis.

* In this schedule, only half of IR deltas need to be calculated and
these deltas could reuse the calculation of ...

5
@@ <:|<:| @@

(Historical) Common graph
of snapshots in [0, i]

30

2

PIE: Streamlined Incremental Analysis ocxone

e LCG-driven deletion-free incremental analysis
e Cal. right deltas AT= YL L AT . including all right IR deltas in TG.

e Cal. left deltas A} = AL, including a few left IR deltas in TG.
However, they could be acquired by directly reusing the
calculation of LCG;.

O C
Tan@ {14y T oy

@9 - e

31

2

PIE: Streamlined Incremental Analysis oo

e LCG-driven deletion-free incremental analysis

e Cal. right deltas AT= YL _L A” . including all right IR deltas in TG.
l [. : .

o Calteftdeltas A=Ay ncludingafewteftiRdeltasinT6.

r, they could be acquired by reusing the calculation of

Half of deltas need
to be calculated.

LCG; LCG;_; — LCG;_1 N A7

LCG;_; N AT

32

2

PIE: Streamlined Incremental Analysis oo

e LCG-driven deletion-free incremental analysis

e Cal. right deltas AT= YL L AT . including all right IR deltas in TG.

* The calculation of the right IR deltas could reuse the calculation of
LCG; and other right IR deltas.

LCG; LCG;_; — LCG;_, N A7
Al LCG;_; N AT
k=0,..,i—1 A}, —-LCG_1NAT,i—k>1

33

2

Evaluation Setup HONG KONG

e Platform e Compared Graph Storage

- A 12-core Linux server with Intel Xeon - XPGraph [MICRO 22]
Gold 5317 CPU, 128 GB memory,and . DGAP [SC ‘23]

1TB Optane Persistent Memory - CommonGraph on PM (CG-PM)
 Graph queries
- BFS, SSSP, SSWP, SSNP, Viterbi » Compared Graph Analytics
* Graph datasets - XPGraph + Kickstarter (XPGraph+KS)

- 12 snapshots, with 0.5% A*and 0.5% - DGAP + Kickstarter (DGAP+KS)

A™ delta Graph v E - CommonGraph on PM (CG-PM)
WikiLinks (WK) [35] 13M_ 669M
uk-2005 (UK) [52] 30M 1.6B
1t-2004 (IT) [52] 4IM 2.1B
Twitter-2010 (TW) [36] 6IM 2.4B
SK [52] 50M 3.7B

Twitter-MPI (TWM) [21] 53M 3.2B 34

2

Evaluation HONG KONG

e Overall Ingestion Performance

OXPGraph BDGAP ©CG-PM BTgStore @PIE

—_— od
w ; ! @
o - 00 < s < .
% (D A
=}
o
~
o
3
o <
sl (8)] <t I~ . -
~ 10 O_Dr-_s moor\. Orl PN — h__'s v
c — O
pe
7
>
£ 2 i 0
> v V v
C |
UK IT TW SK TWM Geo

Outperforms state-of-the-art by 8.4x 35

2

Evaluation HONG KONG

e Overall Analytics Performance
BDGAP+KS ECG-PM mPIE

S
o

w
o

<
o
N

—
o

o

Speedup over XPGraph+KS
N
o

=
=
—

Geomean [A3.

Outperforms state-of-the-art by 6.4x

36

Evaluation

e Breakdown Analysis
e Detached Logical Graph View (DL)
e Chunked Neighbor Index (CNI)

Speedup of PIE over CG-PM

O =~ N W b 00 O N 00 ©

Ow/o DL & w/o CNI

Bw/o DL
5 BPIE
©
8 ©
lp]
o
= = = =
= = = =
SK TWM SK TWM
BFS SSSP

2

HONG KONG

37

Evaluation

e Recovery Cost
* in seconds

WK UK IT TW SK TWM

XPGraph 33 138 17.6 168 246

DGAP 1.6 4.2 5.0 5.8 8.3

PIE 0.8 2.2 2.4 3.1 4.5

iy

HONG KONG

e DRAM Usage (Peak)

XPGraph DGAP PIE w/o Cache PIE w/ Cache

WK 17.4GB 2.0GB 686.2MB 741.2MB
T™W 21.8GB 9.4GB 2.8GB 3.2GB
SK 20.6GB 7.1GB 2.2GB 2.5GB

Best recovery speed and minimal DRAM requirement among PM-based

systems.

38

M ore Experiments (in our paper)

* Ingestion Performance Sensitivity

e to varying #snapshots
e to varying the delta batch sizes

* Analysis Performance Sensitivity

e to varying #snapshots
e to varying the delta batch sizes

e Breakdown Analysis of optimizations

2

HONG KONG

39

2

S u m m a ry HONG KONG

e PIE is an efficient PM-based evolving graph system that
supports deletion-free incremental analysis.
e Logical graph view for avoiding additional PM writes.
* Chunked neighbor index for reducing read amplification.
e Streamlined incre. analysis for less extra computations.

e PIE outperforms state-of-the-art solutions in ingestion,
analytics, DRAM usage and recovery cost.

vunmo.zhang@my.cityu.edu.hk 20

	幻灯片编号 1
	Evolving Graph Analytics
	Evolving Graph Analytics
	Evolving Graph Analytics Approaches
	Evolving Graph Analytics Approaches
	Evolving Graph Analytics Approaches
	Large-scale Evolving Graph Systems
	Large-scale Evolving Graph Systems
	Existing PM-based Evolving Graph Systems
	Existing PM-based Evolving Graph Systems
	Existing PM-based Evolving Graph Systems
	Motivation
	Motivation
	Motivation
	Issues of CommonGraph on PM
	Issues of CommonGraph on PM
	Issues of CommonGraph on PM
	Issues of CommonGraph on PM
	Issues of CommonGraph on PM
	Issues of CommonGraph on PM
	Solutions
	PIE: PM-based Evolving Graph System
	PIE: Storage System
	PIE: Detached Logical Graph View
	PIE: Detached Logical Graph View
	PIE: Chunked Neighbor Index
	PIE: Chunked Neighbor Index
	PIE: Storage System Summary
	PIE: Streamlined Incremental Analysis
	PIE: Streamlined Incremental Analysis
	PIE: Streamlined Incremental Analysis
	PIE: Streamlined Incremental Analysis
	PIE: Streamlined Incremental Analysis
	Evaluation Setup
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	More Experiments (in our paper)
	Summary

