
Yunmo Zhang, Jiacheng Huang, Xizhe Yin,
Junqiao Qiu, Hong Xu, Chun Jason Xue

ACM ICS 2025

PIE: Enabling Fast and Scalable Incremental
Evolving Graph Analytics on Persistent Memory

Evolving Graph Analytics
• Real-world graphs evolve continuously

over time
• With Δ𝑖𝑖 = {Δ𝑖𝑖+, Δ𝑖𝑖−}

• Track a graph property by evaluating
the query on a sequence of snapshots
within a time window

• Have many applications
• In social network, fraud detection,

bioinformatics, network management, etc.

2

Δ1 Δ2

Evolving Graph Analytics
• Real-world graphs evolve continuously

over time
• With Δ𝑖𝑖 = {Δ𝑖𝑖+, Δ𝑖𝑖−}

• Track a graph property by evaluating
the query on a sequence of snapshots
within a time window

• Have many applications
• In social network, fraud detection,

bioinformatics, network management, etc.

3

Δ1 Δ2

For which period(s) is
u unreachable from v?Network

Administrator

Evolving Graph Analytics Approaches
• A naïve method: re-computing

• Full evaluation of each snapshot from scratch

4

Initial

Results

Δ1 Δ2

Evolving Graph Analytics Approaches
• Incremental Analysis

• Reuse results from the previous snapshot.
• Naiad [SOSP’13], Tornado [SIGMOD’16], Kickstarter [ASPLOS’17]

5

Δ1 Δ2

Initial

Results

Step 1: Identify effects
of Δ−.
Step 2: Process Δ+ and
re-converge on the
new snapshot.

Evolving Graph Analytics Approaches
• Deletion-free Incremental Analysis: CommonGraph [ASPLOS’23]

6

Δ1 Δ2

• Avoid processing the expensive
deletions by starting from the
results of the common graph
across snapshots (𝐺𝐺𝑐𝑐).

• Build the triangle grid (TG) of
interm. common graphs (ICG) to
further shared results.

• Follow the computed schedule
(path along the interm. deltas) to
maximize sharing.

ICG12

Δ02𝑙𝑙

ICG01

Δ02𝑟𝑟

Δ01𝑟𝑟 Δ12𝑙𝑙

Gc

Common Graph

Δ01𝑙𝑙 Δ12𝑟𝑟

Large-scale Evolving Graph Systems

7

Application

SSD/Disk DRAM

Traditional Evolving
Graph System

Retrieval

Large-scale Evolving Graph Systems

8

Application

SSD/Disk DRAMPM

PM-based Evolving
Graph System

Data Persistence

Low latency, high density

Byte Addressable

Existing PM-based Evolving Graph Systems

• Have explored porting different graph formats to PM

9

{1, 2, 3}
{3, 4}
{1}
{2}
{3}

Adjacency Lists

v0

v1

v2

v3

v4

v0 v1 v2 v3 v4

0 6 10 13 16

1 2 3 3 3 4 3 1 3 2 0 2 3 0 2 0

PMA (Mutable CSR)

{-3}

{3}

{0}

{-3}

{0, -2}

DGAP [SC ‘23]XPGraph [MICRO ‘22]

Existing PM-based Evolving Graph Systems

• Have explored porting different graph formats to PM

10

{1, 2, 3}
{3, 4}
{1}
{2}
{3}

Adjacency Lists

v0

v1

v2

v3

v4

v0 v1 v2 v3 v4

0 6 10 13 16

1 2 3 3 3 4 3 1 3 2 0 2 3 0 2 0

PMA (Mutable CSR)

DRAM

PM

{−3} {3} − {0}

{0, -2}…

L0

L1

…

Hierarchical
Buffer

flush

{−3}

grouped nebr.

{-3}

{3}

{0}

{-3}

{0, -2}

PM Performance Characteristics:
1. Performance gap with DRAM

(2~3× lower max. READ bandwidth and 7~8× lower max. WRITE bandwidth)
2. Bandwidth drop for small random accesses

(e.g., <256 bytes in Optane PM)

DRAM

PM

DGAP [SC ‘23]XPGraph [MICRO ‘22]

Existing PM-based Evolving Graph Systems

• Have explored porting different graph formats to PM

11

{1, 2, 3}
{3, 4}
{1}
{2}
{3}

Adjacency Lists

v0

v1

v2

v3

v4

v0 v1 v2 v3 v4

0 6 10 13 16

1 2 3 3 3 4 3 1 3 2 0 2 3 0 2 0

PMA (Mutable CSR)

DRAM

PM

{−3} {3} − {0}

{0, -2}…

L0

L1

…

Hierarchical
Buffer

flush

{−3}

grouped nebr.

{-3}

{3}

{0}

{-3}

{0, -2}

PM Performance Characteristics:
1. Performance gap with DRAM

(2~3× lower max. READ bandwidth and 7~8× lower max. WRITE bandwidth)
2. Bandwidth drop for small random accesses

(e.g., <256 bytes in Optane PM)

DRAM

PM

DGAP [SC ‘23]XPGraph [MICRO ‘22]

Problem
Existing PM-based evolving graph systems do not

support efficient incremental analysis.

Motivation
• Integrat Kickstarter into SOTA PM-based graph systems.
• Port CommonGraph directly to PM (CG-PM)

12

(a) Analytics (b) Ingestion

Motivation
• Integrat Kickstarter into SOTA PM-based graph systems.
• Port CommonGraph directly to PM (CG-PM)

13

(a) Analytics (b) Ingestion

Even a direct port of CommonGraph to PM exhibits
better analytics performance and comparable

ingestion performance compared to SOTA.

Motivation
• Integrat Kickstarter into SOTA PM-based graph systems.
• Port CommonGraph directly to PM (CG-PM)

14

(a) Analytics (b) Ingestion

Even a direct port of CommonGraph to PM exhibits
better analytics performance and comparable

ingestion performance compared to SOTA.

However, directly porting CommonGraph to PM
suffers from high read/write amplifications and
extra computations, making it far from optimal.

Issues of CommonGraph on PM

15

Issue 1: High Write
Amplification

Issue 2: High Read
Amplification

Issue 3: Extra
Computations

Issues of CommonGraph on PM

16

Issue 1: High Write
Amplification

Issue 2: High Read
Amplification

Issue 3: Extra
Computations

• Maintaining the common graph upon
ingestion requires updating the base
graph CSR stored in PM.

• It causes small random writes.

Issues of CommonGraph on PM

17

Issue 1: High Write
Amplification

Issue 2: High Read
Amplification

Issue 3: Extra
Computations

• Maintaining the common graph upon
ingestion requires updating the base
graph CSR stored in PM.

• It causes small random writes.

• Intermediate deltas Δ𝑖𝑖𝑖𝑖
𝑙𝑙/𝑟𝑟are required

for constructing TG (including
snapshots), resulting in additional PM
writes.

Issues of CommonGraph on PM

18

Issue 1: High Write
Amplification

Issue 2: High Read
Amplification

Issue 3: Extra
Computations

Issues of CommonGraph on PM

19

Issue 1: High Write
Amplification

Issue 2: High Read
Amplification

Issue 3: Extra
Computations

• Calculating 𝐺𝐺𝑐𝑐 requires expensive set intersection operations.
• It causes additional reads from PM, which are random reads

when using binary search.

1 2 - - 4 1 - 3

0 3 5 6 7

(Evolving) Common Graph CSR

Δ𝑖𝑖− = {3 → 2, 4 → 0}

1 2 - - 4 1 2 3

0 3 5 6 7

v0 v1 v2 v3 v4 v0 v1 v2 v3 v4∩

Issues of CommonGraph on PM

20

Issue 1: High Write
Amplification

Issue 2: High Read
Amplification

Issue 3: Extra
Computations• Computing the optimal schedule

requires building a complete TG.
• This involves 𝑁𝑁(𝑁𝑁 − 1) set intersections

to calculate the IR deltas, for snapshots
{𝐺𝐺0, … , 𝐺𝐺𝑁𝑁}.

Solutions

21

Issue 1: High Write
Amplification

Issue 2: High Read
Amplification

Issue 3: Extra
Computations

Solution 1: Detached
Logical Graph View

Solution 2: Chunked
Neighbor Index

Solution 3: Streamlined
Incremental Analysis

DRAM
PM

1 1 0 0 1 1 0 1

Bitmap

Graph Data

DRAM
PM

High Degree Neigh.
GcICG01ICG00

G3G2G1

PIE: PM-based Evolving Graph System
• An evolving graph storage and analytics system
• System Overview

22

Refer to the
paperThis talk

PIE: Storage System
• Graph data are totally stored in PM.
• Hybrid delta format

• Deltas are represented by CSRs in most cases.
• Deltas are stored as edge list in PM when vertex array >> edge

array, its CSR is rebuilt in DRAM at runtime.

23

PM

0

PIE: Detached Logical Graph View
• The graph view of 𝐺𝐺𝑐𝑐 and components in TG are logically

provided to the deletion-free incremental analysis.
• The logical is separated from the graph storage by bitmaps.
• It requires NO additional PM writes.

24

DRAM
PM

1 1 0 0 1 1 0 1

𝐺𝐺cBitmap

Common Graph 𝐺𝐺c (Intermediate) Deltas

PIE: Detached Logical Graph View
• The logical graph view is feasible due to our observation for

the relationship between TG components and graph data.
• 𝐺𝐺𝑐𝑐 is included by the base graph stored in PM (𝐺𝐺𝑐𝑐 = ICG0,𝑁𝑁)

• IR deltas are included by the ingested deltas in PM

25

Graph Data
TG components

PIE: Chunked Neighbor Index
• Chunked neighbor index is built in DRAM for high-degree

vertices in 𝐺𝐺0.
• The neighbors are segmented into chunks of the buffer size, e.g.,

256B.
• A binary tree (stored as an array) is built with the pivot value of

each chunk as the leaf node to accelerate search.

26neighbors of a high-degree vertex

PIE: Chunked Neighbor Index
• Chunked neighbor index is built in DRAM for high-degree

vertices in 𝐺𝐺0.
• A leaf node position in the array directly indicates the position of

the chunk containing the target of a search.
• A search on a neighbor in 𝐺𝐺𝑐𝑐 requires one PM media access.

27neighbors of a high-degree vertex

PIE: Storage System Summary

28

No Write Amplification

Low Read Amplification

Crash Consistency--buffered
durable linearizability

ICG0i

PIE: Streamlined Incremental Analysis
• A scheduling-free design

• Instead of building a complete TG, we only only focus on the
schedule path that goes through ICGs that are historical common
graph.

29

GcICG00

GNGiG0

(Historical) Common graph
of snapshots in [0, i]

… …

LCGi

PIE: Streamlined Incremental Analysis
• A scheduling-free design

• Lasting Common Graph (LCG)-driven deletion-free incremental
analysis.

• In this schedule, only half of IR deltas need to be calculated and
these deltas could reuse the calculation of 𝐺𝐺𝑐𝑐.

30

GNGiG0

(Historical) Common graph
of snapshots in [0, i]

… …LCG0 LCGN

LCGNLCGiLCG0

PIE: Streamlined Incremental Analysis
• LCG-driven deletion-free incremental analysis

• Cal. right deltas Δ𝑖𝑖𝑟𝑟= ∑𝑘𝑘=0𝑖𝑖−1 Δ𝑘𝑘𝑖𝑖𝑟𝑟 , including all right IR deltas in TG.
• Cal. left deltas Δ𝑖𝑖𝑙𝑙 = Δ0𝑖𝑖𝑙𝑙 , including a few left IR deltas in TG.

However, they could be acquired by directly reusing the
calculation of 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖.

31

GNGiG0

… …

Δ𝑖𝑖𝑙𝑙

Δ𝑖𝑖𝑟𝑟

Δ𝑁𝑁𝑙𝑙

Δ𝑁𝑁𝑟𝑟Δ0𝑟𝑟(∅)

PIE: Streamlined Incremental Analysis
• LCG-driven deletion-free incremental analysis

• Cal. right deltas Δ𝑖𝑖𝑟𝑟= ∑𝑘𝑘=0𝑖𝑖−1 Δ𝑘𝑘𝑘𝑘𝑟𝑟 , including all right IR deltas in TG.
• Cal. left deltas Δ𝑖𝑖𝑙𝑙 = Δ0𝑖𝑖𝑙𝑙 , including a few left IR deltas in TG.

However, they could be acquired by reusing the calculation of
𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖.

32

PIE

𝐿𝐿𝐿𝐿𝐺𝐺𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−1 − 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−1 ∩ Δ𝑖𝑖−

Δ𝑖𝑖𝑙𝑙 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−1 ∩ Δ𝑖𝑖−

Half of deltas need
to be calculated.

PIE: Streamlined Incremental Analysis
• LCG-driven deletion-free incremental analysis

• Cal. right deltas Δ𝑖𝑖𝑟𝑟= ∑𝑘𝑘=0𝑖𝑖−1 Δ𝑘𝑘𝑘𝑘𝑟𝑟 , including all right IR deltas in TG.
• The calculation of the right IR deltas could reuse the calculation of
𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 and other right IR deltas.

33

PIE

𝐿𝐿𝐿𝐿𝐺𝐺𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−1 − 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−1 ∩ Δ𝑖𝑖−

Δ𝑖𝑖𝑙𝑙 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−1 ∩ Δ𝑖𝑖−

Δk𝑖𝑖𝑟𝑟 ,
𝑘𝑘 = 0, … , 𝑖𝑖 − 1

Δ𝑖𝑖+, 𝑖𝑖 − 𝑘𝑘 = 1
Δ𝑘𝑘,𝑖𝑖−1
𝑟𝑟 − ¬𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−1 ∩ Δ𝑖𝑖−, 𝑖𝑖 − 𝑘𝑘 > 1

Evaluation Setup
• Platform

- A 12-core Linux server with Intel Xeon
Gold 5317 CPU, 128 GB memory, and
1TB Optane Persistent Memory

• Graph queries
- BFS, SSSP, SSWP, SSNP, Viterbi

• Graph datasets
- 12 snapshots, with 0.5% Δ+and 0.5%
Δ− delta

34

• Compared Graph Storage
- XPGraph [MICRO ‘22]
- DGAP [SC ‘23]
- CommonGraph on PM (CG-PM)

• Compared Graph Analytics
- XPGraph + Kickstarter (XPGraph+KS)
- DGAP + Kickstarter (DGAP+KS)
- CommonGraph on PM (CG-PM)

Evaluation
• Overall Ingestion Performance

35Outperforms state-of-the-art by 8.4x

Evaluation
• Overall Analytics Performance

36
Outperforms state-of-the-art by 6.4x

Evaluation
• Breakdown Analysis

• Detached Logical Graph View (DL)
• Chunked Neighbor Index (CNI)

37

Evaluation
• Recovery Cost

• in seconds

38

• DRAM Usage (Peak)

Best recovery speed and minimal DRAM requirement among PM-based
systems.

More Experiments (in our paper)

• Ingestion Performance Sensitivity
• to varying #snapshots
• to varying the delta batch sizes

• Analysis Performance Sensitivity
• to varying #snapshots
• to varying the delta batch sizes

• Breakdown Analysis of optimizations

39

Summary
• PIE is an efficient PM-based evolving graph system that

supports deletion-free incremental analysis.
• Logical graph view for avoiding additional PM writes.
• Chunked neighbor index for reducing read amplification.
• Streamlined incre. analysis for less extra computations.

• PIE outperforms state-of-the-art solutions in ingestion,
analytics, DRAM usage and recovery cost.

40yunmo.zhang@my.cityu.edu.hk

	幻灯片编号 1
	Evolving Graph Analytics
	Evolving Graph Analytics
	Evolving Graph Analytics Approaches
	Evolving Graph Analytics Approaches
	Evolving Graph Analytics Approaches
	Large-scale Evolving Graph Systems
	Large-scale Evolving Graph Systems
	Existing PM-based Evolving Graph Systems
	Existing PM-based Evolving Graph Systems
	Existing PM-based Evolving Graph Systems
	Motivation
	Motivation
	Motivation
	Issues of CommonGraph on PM
	Issues of CommonGraph on PM
	Issues of CommonGraph on PM
	Issues of CommonGraph on PM
	Issues of CommonGraph on PM
	Issues of CommonGraph on PM
	Solutions
	PIE: PM-based Evolving Graph System
	PIE: Storage System
	PIE: Detached Logical Graph View
	PIE: Detached Logical Graph View
	PIE: Chunked Neighbor Index
	PIE: Chunked Neighbor Index
	PIE: Storage System Summary
	PIE: Streamlined Incremental Analysis
	PIE: Streamlined Incremental Analysis
	PIE: Streamlined Incremental Analysis
	PIE: Streamlined Incremental Analysis
	PIE: Streamlined Incremental Analysis
	Evaluation Setup
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	More Experiments (in our paper)
	Summary

