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Evolving Graph Analytics
• Real-world graphs evolve continuously 

over time
• With Δ𝑖𝑖 = {Δ𝑖𝑖+, Δ𝑖𝑖−}

• Track a graph property by evaluating 
the query on a sequence of snapshots 
within a time window

• Have many applications 
• In social network, fraud detection, 

bioinformatics, network management, etc.
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For which period(s) is 
u unreachable from v?Network 

Administrator



Evolving Graph Analytics Approaches
• A naïve method: re-computing

• Full evaluation of each snapshot from scratch
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Evolving Graph Analytics Approaches
• Incremental Analysis

• Reuse results from the previous snapshot.
• Naiad [SOSP’13], Tornado [SIGMOD’16], Kickstarter [ASPLOS’17]
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Initial

Results

Step 1: Identify effects 
of Δ−.
Step 2: Process Δ+ and 
re-converge on the 
new snapshot.



Evolving Graph Analytics Approaches
• Deletion-free Incremental Analysis: CommonGraph [ASPLOS’23]
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• Avoid processing the expensive 
deletions by starting from the 
results of the common graph 
across snapshots (𝐺𝐺𝑐𝑐).

• Build the triangle grid (TG) of 
interm. common graphs (ICG) to 
further shared results.

• Follow the computed schedule 
(path along the interm. deltas) to 
maximize sharing.
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Large-scale Evolving Graph Systems
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Application

SSD/Disk DRAM

Traditional Evolving 
Graph System

Retrieval



Large-scale Evolving Graph Systems
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Application

SSD/Disk DRAMPM

PM-based Evolving 
Graph System

Data Persistence

Low latency, high density

Byte Addressable



Existing PM-based Evolving Graph Systems

• Have explored porting different graph formats to PM
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Problem
Existing PM-based evolving graph systems do not 

support efficient incremental analysis.



Motivation
• Integrat Kickstarter into SOTA PM-based graph systems.
• Port CommonGraph directly to PM (CG-PM)
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(a) Analytics (b) Ingestion

Even a direct port of CommonGraph to PM exhibits 
better analytics performance and comparable 

ingestion performance compared to SOTA.

However, directly porting CommonGraph to PM 
suffers from high read/write amplifications and 
extra computations, making it far from optimal.



Issues of CommonGraph on PM 
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• Maintaining the common graph upon 
ingestion requires updating the base 
graph CSR stored in PM.

• It causes small random writes.



Issues of CommonGraph on PM 
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Issue 1: High Write 
Amplification

Issue 2: High Read 
Amplification

Issue 3: Extra 
Computations

• Maintaining the common graph upon 
ingestion requires updating the base 
graph CSR stored in PM.

• It causes small random writes.

• Intermediate deltas Δ𝑖𝑖𝑖𝑖
𝑙𝑙/𝑟𝑟are required 

for constructing TG (including 
snapshots), resulting in additional PM 
writes.
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Issues of CommonGraph on PM 
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Issue 1: High Write 
Amplification

Issue 2: High Read 
Amplification

Issue 3: Extra 
Computations

• Calculating 𝐺𝐺𝑐𝑐 requires expensive set intersection operations.
• It causes additional reads from PM, which are random reads 

when using binary search.
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Issues of CommonGraph on PM 
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Issue 1: High Write 
Amplification

Issue 2: High Read 
Amplification

Issue 3: Extra 
Computations• Computing the optimal schedule 

requires building a complete TG.
• This involves 𝑁𝑁(𝑁𝑁 − 1) set intersections 

to calculate the IR deltas, for snapshots 
{𝐺𝐺0, … , 𝐺𝐺𝑁𝑁}.



Solutions
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Issue 1: High Write 
Amplification

Issue 2: High Read 
Amplification

Issue 3: Extra 
Computations

Solution 1: Detached 
Logical Graph View

Solution 2: Chunked 
Neighbor Index

Solution 3: Streamlined 
Incremental Analysis
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PIE: PM-based Evolving Graph System
• An evolving graph storage and analytics system
• System Overview
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Refer to the 
paperThis talk



PIE: Storage System
• Graph data are totally stored in PM.
• Hybrid delta format

• Deltas are represented by CSRs in most cases.
• Deltas are stored as edge list in PM when vertex array >> edge 

array, its CSR is rebuilt in DRAM at runtime.
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PIE: Detached Logical Graph View
• The graph view of 𝐺𝐺𝑐𝑐 and components in TG are logically 

provided to the deletion-free incremental analysis.
• The logical is separated from the graph storage by bitmaps.
• It requires NO additional PM writes.
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PIE: Detached Logical Graph View
• The logical graph view is feasible due to our observation for 

the relationship between TG components and graph data.
• 𝐺𝐺𝑐𝑐  is included by the base graph stored in PM (𝐺𝐺𝑐𝑐 = ICG0,𝑁𝑁)

• IR deltas are included by the ingested deltas in PM
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PIE: Chunked Neighbor Index
• Chunked neighbor index is built in DRAM for high-degree 

vertices in 𝐺𝐺0.
• The neighbors are segmented into chunks of the buffer size, e.g., 

256B.
• A binary tree (stored as an array) is built with the pivot value of 

each chunk as the leaf node to accelerate search.

26neighbors of a high-degree vertex



PIE: Chunked Neighbor Index
• Chunked neighbor index is built in DRAM for high-degree 

vertices in 𝐺𝐺0.
• A leaf node position in the array directly indicates the position of 

the chunk containing the target of a search.
• A search on a neighbor in 𝐺𝐺𝑐𝑐  requires one PM media access.

27neighbors of a high-degree vertex



PIE: Storage System Summary
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No Write Amplification

Low Read Amplification

Crash Consistency--buffered 
durable linearizability



ICG0i

PIE: Streamlined Incremental Analysis
• A scheduling-free design

• Instead of building a complete TG, we only only focus on the 
schedule path that goes through ICGs that are historical common 
graph.
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GcICG00

GNGiG0

(Historical) Common graph 
of snapshots in [0, i]

… …



LCGi

PIE: Streamlined Incremental Analysis
• A scheduling-free design

• Lasting Common Graph (LCG)-driven deletion-free incremental 
analysis.

• In this schedule, only half of IR deltas need to be calculated and 
these deltas could reuse the calculation of 𝐺𝐺𝑐𝑐.
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GNGiG0

(Historical) Common graph 
of snapshots in [0, i]

… …LCG0 LCGN



LCGNLCGiLCG0

PIE: Streamlined Incremental Analysis
• LCG-driven deletion-free incremental analysis

• Cal. right deltas Δ𝑖𝑖𝑟𝑟= ∑𝑘𝑘=0𝑖𝑖−1 Δ𝑘𝑘𝑖𝑖𝑟𝑟 , including all right IR deltas in TG.
• Cal. left deltas Δ𝑖𝑖𝑙𝑙 = Δ0𝑖𝑖𝑙𝑙 , including a few left IR deltas in TG. 

However, they could be acquired by directly reusing the 
calculation of 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖.
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PIE: Streamlined Incremental Analysis
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𝐿𝐿𝐿𝐿𝐺𝐺𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−1 − 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−1 ∩ Δ𝑖𝑖−

Δ𝑖𝑖𝑙𝑙 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−1 ∩ Δ𝑖𝑖−

Half of deltas need 
to be calculated.



PIE: Streamlined Incremental Analysis
• LCG-driven deletion-free incremental analysis

• Cal. right deltas Δ𝑖𝑖𝑟𝑟= ∑𝑘𝑘=0𝑖𝑖−1 Δ𝑘𝑘𝑘𝑘𝑟𝑟 , including all right IR deltas in TG.
• The calculation of the right IR deltas could reuse the calculation of 
𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 and other right IR deltas.
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Δ𝑘𝑘,𝑖𝑖−1
𝑟𝑟 − ¬𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖−1 ∩ Δ𝑖𝑖−, 𝑖𝑖 − 𝑘𝑘 > 1



Evaluation Setup
• Platform

- A 12-core Linux server with Intel Xeon 
Gold 5317 CPU, 128 GB memory, and 
1TB Optane Persistent Memory

• Graph queries
- BFS, SSSP, SSWP, SSNP, Viterbi

• Graph datasets
- 12 snapshots, with 0.5% Δ+and 0.5% 
Δ− delta
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• Compared Graph Storage
- XPGraph [MICRO ‘22]
- DGAP [SC ‘23] 
- CommonGraph on PM (CG-PM)

• Compared Graph Analytics
- XPGraph + Kickstarter (XPGraph+KS)
- DGAP + Kickstarter (DGAP+KS)
- CommonGraph on PM (CG-PM)



Evaluation
• Overall Ingestion Performance

35Outperforms state-of-the-art by 8.4x 



Evaluation
• Overall Analytics Performance

36
Outperforms state-of-the-art by 6.4x 



Evaluation
• Breakdown Analysis

• Detached Logical Graph View (DL)
• Chunked Neighbor Index (CNI)
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Evaluation
• Recovery Cost

• in seconds
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• DRAM Usage (Peak)

Best recovery speed and minimal DRAM requirement among PM-based 
systems.



More Experiments (in our paper)

• Ingestion Performance Sensitivity
• to varying #snapshots
• to varying the delta batch sizes

• Analysis Performance Sensitivity
• to varying #snapshots
• to varying the delta batch sizes

• Breakdown Analysis of optimizations

39



Summary
• PIE is an efficient PM-based evolving graph system that 

supports deletion-free incremental analysis.
• Logical graph view for avoiding additional PM writes.
• Chunked neighbor index for reducing read amplification.
• Streamlined incre. analysis for less extra computations.

• PIE outperforms state-of-the-art solutions in ingestion, 
analytics, DRAM usage and recovery cost.

40yunmo.zhang@my.cityu.edu.hk
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