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Evolving Graph Analytics IM

e Real-world graphs evolve continuously
over time
o With A; = {A], A7)
e Track a graph property by evaluating
the query on a sequence of snapshots
within a time window

e Have many applications G G, G,

e |n social network, fraud detection,
bioinformatics, network management, etc.
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Evolving Graph Analytics
e Real-world graphs evolve continuously
over time QG ¥ 0G) } 06}
o With A; = {A}, A7}
* Track a graph property by evaluating R f‘jf;;}g;z | ;
the query on a sequence of snapshots = =#= < == = ==
G, G, G,

within a time window

e Have many applications
e |n social network, fraud detection,

bioinformatics, network management, etc.

Network
Administrator dah



Evolving Graph Analytics Approaches 1@

* A naive method: re-computing
e Full evaluation of each snapshot from scratch

Initial

Results -:l




Evolving Graph Analytics Approaches 1@

* Incremental Analysis

e Reuse results from the previous snapshot.
e Naiad [SOSP’13], Tornado [SIGMOD’16], Kickstarter [ASPLOS’17]

Step 1: Identify effects
of A™.

Step 2: Process AT and
re-converge on the
new snapshot.

Initial

o

Results -:l




Evolving Graph Analytics Approaches @

* Deletion-free Incremental Analysis: CommonGraph [ASPLOS’ 23]

e Avoid processing the expensive
deletions by starting from the
results of the common graph
across snapshots (G,).

e Build the triangle grid (TG) of
interm. common graphs (ICG) to
further shared results.

* Follow the computed schedule
(path along the interm. deltas) to
maximize sharing.

Common Graph
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Large-scale Evolving Graph Systems  ouwione

Application
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Traditional Evolving
Graph System
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Large-scale Evolving Graph Systems  ouwione

Application +/ Data Persistence

NG Y
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N Q) «/ Low latency, high density
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«/ Byte Addressable

PM-based Evolving
Graph System



Existing PM-based Evolving Graph Systems.

* Have explored porting different graph formats to PM
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PM Performance Characteristics:

1. Performance gap with DRAM
(2~3x lower max. READ bandwidth and 7~8x lower max. WRITE bandwidth)

2. Bandwidth drop for small random accesses
(e.g., <256 bytes in Optane PM)
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PM Performance Characteristics:

1. Performance gap with DRAM
(2~3x lower max. READ bandwidth and 7~8x lower max. WRITE bandwidth)

2. Bandwidth drop for small random accesses
(e.g., <256 bytes in Optane PM)

Problem
Existing PM-based evolving graph systems do not
support efficient incremental analysis.

XPGraph [MICRO 22] DGAP [SC 23]



MOtivatiOn HONG KONG

* Integrat Kickstarter into SOTA PM-based graph systemes.
e Port CommonGraph directly to PM (CG-PM)

(a) Analytics (b) Ingestion
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MOtivatiOn HONG KONG

* Integrat Kickstarter into SOTA PM-based graph systemes.
e Port CommonGraph directly to PM (CG-PM)

Even a direct port of CommonGraph to PM exhibits
better analytics performance and comparable
ingestion performance compared to SOTA.
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MOtivatiOn HONG KONG

* Integrat Kickstarter into SOTA PM-based graph systems.
e Port CommonGraph directly to PM (CG-PM)

However, directly porting CommonGraph to PM
suffers from high read/write amplifications and
extra computations, making it far from optimal.
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Issues of CommonGraph on PM

Issue 1: High Write i  Issue 2: High Read Issue 3: Extra
Amplification Amplification . Computations
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Issues of CommonGraph on PM

| Issue 1: High Write
Amplification
B Store Delta
50 B Build TG
’g 50
§ 40
(b}
% 30 7.4x
E 20 7.3x
10
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SK TWM

2

 Maintaining the common graph upon
ingestion requires updating the base
graph CSR stored in PM.

* |t causes small random writes.

0(3|5 0|3(5|6|7 0
NHBEER " =t HEEEEL \===SE

 Base Graph G, G. of {Gy, Gy} G, of {Go, Gy, Gy)
(Evolving) Common Graph CSR
16



Issues of CommonGraph on PM

Issue 1: High Write
Amplification

c
8 40

B Store Delta
OBuild TG

74X

7.3X

2

 Maintaining the common graph upon
ingestion requires updating the base
graph CSR stored in PM.

* |t causes small random writes.

* Intermediate deltas A%rare required

for constructing TG (including
snapshots), resulting in additional PM
writes.

17



Issues of CommonGraph on PM

Issue 2: High Read
Amplification

Issue 1: High Write
Amplification
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Issues of CommonGraph on PM

 Calculating G, requires expensive set intersection operations.

* |t causes additional reads from PM, which are random reads
when using binary search.

lA{?{3—>2,4—>0}
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(Evolving) Common Graph CSR
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Issues of CommonGraph on PM

e Computing the optimal schedule
requires building a complete TG.

* This involves N(N — 1) set intersections
to calculate the IR deltas, for snapshots

(Go, ., Gy ).

Issue 3: Extra

2
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Solutions

Issue 1: High Write
Amplification

Bitmap
17/1T(0]10|1J1]10]1
DRAM -
PM
Graph Data

Solution 1: Detached
Logical Graph View

Issue 2: High Read
Amplification

High Degree Neigh.

Solution 2: Chunked
Neighbor Index

2

HONG KONG

Issue 3: Extra
Computations

Solution 3: Streamlined
Incremental Analysis

21



PIE: PM-based Evolving Graph System f-ﬂ

* An evolving graph storage and analytics system
* System Overview
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PIE: Storage System 1@

 Graph data are totally stored in PM.

* Hybrid delta format

e Deltas are represented by CSRs in most cases.

e Deltas are stored as edge list in PM when vertex array >> edge
array, its CSR is rebuilt in DRAM at runtime.

319 csriat)
PT\/I ______ ;O_vf_ v; \73 V, Vo V1 o, Vs Vy Vs V4
0|3|5]6[7 0|1 _ L ..]o|1 0|1
............... T v P13
11213(3/4|1]2]3 3|3 Va1o| | |2]o 0|2
__________________ d

Go AT LAY LA A% 23



PIE: Detached Logical Graph View 1@

e The graph view of G. and components in TG are logically
provided to the deletion-free incremental analysis.
* The logical is separated from the graph storage by bitmaps.
* |t requires NO additional PM writes.

Common Graph G, (Intermediate) Deltas

DRAM G.Bitmap
PT\/I _____ ;O_VT-V; \73_\/4_ B : VO VT V3 V4 V3 V4 :
ol3|sl6|7 {01 0l1 0f1
................ Vs 3
11213|3]4]1]2]3 13]3 Vario|  |2lo] |02

Go N A} L 24



PIE: Detached Logical Graph View @

* The logical graph view is feasible due to our observation for
the relationship between TG components and graph data.

* G is included by the base graph stored in PM (G, = ICGg y)

J
ICGy; = Gy - Z AT
k=1

Graph Data
* IR deltas are included by the ingested deltas in PM |15 components

j—1 J
I _ A-— E : +, ro_ A+ E : —
k=i k=i+1

25



PIE: Chunked Neighbor Index f@

e Chunked neighbor index is built in DRAM for high-degree
vertices in Gy.

* The neighbors are segmented into chunks of the buffer size, e.g.,
2568B.

e A binary tree (stored as an array) is built with the pivot value of
each chunk as the leaf node to accelerate search.

Chunked
Neighbor Index

DRAM _ _ cooolooosis oo LT
PM 1| ... |278|366| ... [505 | 598 | ... | 788 | 801 | ... | 982
Offsets in 0 63 64 127 128 191 192 255
neighbors

256B
(Buffer size)

neighbors of a high-degree vertex 26



PIE: Chunked Neighbor Index f@

e Chunked neighbor index is built in DRAM for high-degree
vertices in Gy.

* A leaf node position in the array directly indicates the position of
the chunk containing the target of a search.

e A search on a neighbor in G, requires one PM media access.

Chunked
Neighbor Index

DRAM _ _ cooolooosis oo LT
PM 1| ... |278|366| ... [505 | 598 | ... | 788 | 801 | ... | 982
Offsets in 0 63 64 127 128 191 192 255
neighbors

256B
(Buffer size)

neighbors of a high-degree vertex 27
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PIE: Storage System Summary
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PIE: Streamlined Incremental Analysis ocxone

e A scheduling-free design

* Instead of building a complete TG, we only only focus on the
schedule path that goes through ICGs that are historical common
graph.

® ¢
<:| <:|<:| @@

(Historical) Common graph
of snapshots in [0, i]
29
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PIE: Streamlined Incremental Analysis ocxone

e A scheduling-free design

e Lasting Common Graph (LCG)-driven deletion-free incremental
analysis.

* In this schedule, only half of IR deltas need to be calculated and
these deltas could reuse the calculation of ...

5
@@ <:|<:| @@

(Historical) Common graph
of snapshots in [0, i]

30
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PIE: Streamlined Incremental Analysis ocxone

e LCG-driven deletion-free incremental analysis
e Cal. right deltas AT= YL L AT . including all right IR deltas in TG.

e Cal. left deltas A} = AL, including a few left IR deltas in TG.
However, they could be acquired by directly reusing the
calculation of LCG;.

O C
Tan@ {14y T oy

@9 - e

31
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PIE: Streamlined Incremental Analysis oo

e LCG-driven deletion-free incremental analysis

e Cal. right deltas AT= YL _L A” . including all right IR deltas in TG.
l [ . : .

o Calteftdeltas A=Ay ncludingafewteftiRdeltasinT6.

r, they could be acquired by reusing the calculation of

Half of deltas need
to be calculated.

LCG; LCG;_; — LCG;_1 N A7

LCG;_; N AT

32
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PIE: Streamlined Incremental Analysis oo

e LCG-driven deletion-free incremental analysis

e Cal. right deltas AT= YL L AT . including all right IR deltas in TG.

* The calculation of the right IR deltas could reuse the calculation of
LCG; and other right IR deltas.

LCG; LCG;_; — LCG;_, N A7
Al LCG;_; N AT
k=0,..,i—1 A}, —-LCG_1NAT,i—k>1

33
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Evaluation Setup HONG KONG

e Platform e Compared Graph Storage

- A 12-core Linux server with Intel Xeon - XPGraph [MICRO 22]
Gold 5317 CPU, 128 GB memory,and . DGAP [SC ‘23]

1TB Optane Persistent Memory - CommonGraph on PM (CG-PM)
 Graph queries
- BFS, SSSP, SSWP, SSNP, Viterbi » Compared Graph Analytics
* Graph datasets - XPGraph + Kickstarter (XPGraph+KS)

- 12 snapshots, with 0.5% A*and 0.5% - DGAP + Kickstarter (DGAP+KS)

A™ delta Graph v E - CommonGraph on PM (CG-PM)
WikiLinks (WK) [35]  13M_ 669M
uk-2005 (UK) [52] 30M  1.6B
1t-2004 (IT) [52] 4IM  2.1B
Twitter-2010 (TW) [36] 6IM  2.4B
SK [52] 50M  3.7B

Twitter-MPI (TWM) [21] 53M 3.2B 34
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Evaluation HONG KONG

e Overall Ingestion Performance
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Outperforms state-of-the-art by 8.4x 35
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Evaluation HONG KONG

e Overall Analytics Performance
BDGAP+KS ECG-PM mPIE

S
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w
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—
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Speedup over XPGraph+KS
N
o

=
=
—

Geomean [A3.

Outperforms state-of-the-art by 6.4x
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Evaluation

e Breakdown Analysis
e Detached Logical Graph View (DL)
e Chunked Neighbor Index (CNI)

Speedup of PIE over CG-PM

O =~ N W b 00 O N 00 ©

Ow/o DL & w/o CNI

Bw/o DL
5 BPIE
©
8 ©
lp]
o
= = = =
= = = =
SK TWM SK TWM
BFS SSSP

2

HONG KONG
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Evaluation

e Recovery Cost
* in seconds

WK UK IT TW SK TWM

XPGraph 33 138 17.6 168 246

DGAP 1.6 4.2 5.0 5.8 8.3

PIE 0.8 2.2 2.4 3.1 4.5

iy

HONG KONG

e DRAM Usage (Peak)

XPGraph DGAP PIE w/o Cache PIE w/ Cache

WK 17.4GB 2.0GB 686.2MB 741.2MB
T™W  21.8GB 9.4GB 2.8GB 3.2GB
SK 20.6GB 7.1GB 2.2GB 2.5GB

Best recovery speed and minimal DRAM requirement among PM-based

systems.

38



M ore Experiments (in our paper)

* Ingestion Performance Sensitivity

e to varying #snapshots
e to varying the delta batch sizes

* Analysis Performance Sensitivity

e to varying #snapshots
e to varying the delta batch sizes

e Breakdown Analysis of optimizations

2

HONG KONG

39
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S u m m a ry HONG KONG

e PIE is an efficient PM-based evolving graph system that
supports deletion-free incremental analysis.
e Logical graph view for avoiding additional PM writes.
* Chunked neighbor index for reducing read amplification.
e Streamlined incre. analysis for less extra computations.

e PIE outperforms state-of-the-art solutions in ingestion,
analytics, DRAM usage and recovery cost.

vunmo.zhang@my.cityu.edu.hk 20
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