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Is E reachable from A?

HSA1, Batfish2, Minesweeper3, …

Reachability

1Kazemian et al., “Header Space Analysis: Static Checking for Networks,” in Proc. USENIX NSDI, 2012.
2Fogel et al, “A General Approach to Network Configuration Analysis,” in Proc. USENIX NSDI, 2015
3Beckett et al,, “A General Approach to Network Configuration Verification,” in Proc. ACM SIGCOMM, 2017



Prior Network Verification
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Is E reachable from A?

HSA1, Batfish2, Minesweeper3, …

√Answering a deterministic question
√For path-related (qualitative) properties

Reachability

Are there other 
properties?

1Kazemian et al., “Header Space Analysis: Static Checking for Networks,” in Proc. USENIX NSDI, 2012.
2Fogel et al, “A General Approach to Network Configuration Analysis,” in Proc. USENIX NSDI, 2015
3Beckett et al,, “A General Approach to Network Configuration Verification,” in Proc. ACM SIGCOMM, 2017



Prior Network Verification
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Is network free from 
overload?

QARC1, Chang et al2.
original traffic

redirected traffic

41Subramanian et al., Detecting Network Load Violations for Distributed Control Planes,” in Proc. ACM PLDI, 2020
2Chang et al., “Robust Validation of Network Designs under Uncertain Demands and Failures,” in Proc. USENIX NSDI, 2017
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Is network free from 
overload?

QARC1, Chang et al2.
original traffic

redirected traffic
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√Answering a deterministic question
√For a traffic-related (quantitative) property

insufficient

1Subramanian et al., Detecting Network Load Violations for Distributed Control Planes,” in Proc. ACM PLDI, 2020
2Chang et al., “Robust Validation of Network Designs under Uncertain Demands and Failures,” in Proc. USENIX NSDI, 2017



A Running Example
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Demand (A,E) traffic volume 
fluctuation1 range: [4,6]

Demand (C,E) traffic volume 
fluctuation range: [8,12]

Link Capacity: 10

[4,6]

[4,6]

[2,3]

[2,3]

1Matthew Roughan, Robust Network Planning (also the image source)

splitting weights: 1: 1

splitting weights: 1: 1



A Running Example
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Link Capacity: 10
Is link BE 

overloaded?

A

B

C

D

E

F
[4,6]

[4,6]

[2,3]

[2,3]

After failure…

Load on BE:
0.5 + 0.5 𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5 𝑑𝑑𝐶𝐶𝐶𝐶

[2,3]

If 𝑑𝑑𝐴𝐴𝐴𝐴 = 6 and 𝑑𝑑𝐶𝐶𝐶𝐶 = 12

If 𝑑𝑑𝐴𝐴𝐴𝐴 = 5 and 𝑑𝑑𝐶𝐶𝐶𝐶 = 10No

Yes

How likely 
is BE to be 

overloaded?

Volume Range [4,6]

Volume Range [8,12]



A Running Example

8

Link Capacity: 10
Is link BE 

overloaded?

A

B

C

D

E

F
[4,6]

[4,6]

[2,3]

[2,3]

After failure…

Load on BE:
0.5 + 0.5 𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5 𝑑𝑑𝐶𝐶𝐶𝐶

[2,3]

If 𝑑𝑑𝐴𝐴𝐴𝐴 = 6 and 𝑑𝑑𝐶𝐶𝐶𝐶 = 12

If 𝑑𝑑𝐴𝐴𝐴𝐴 = 5 and 𝑑𝑑𝐶𝐶𝐶𝐶 = 10No

Yes

Simple yes or no answers could not profile the network availability comprehensively.

Probabilistic analysis naturally fits here.

How likely 
is BE to be 

overloaded?

Volume Range [4,6]

Volume Range [8,12]



Probabilistic Analysis 
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Link Capacity: 10

A

B

C

D

E

F
[4,6]

[4,6]

[2,3]
𝑑𝑑𝐴𝐴𝐴𝐴

𝑑𝑑𝐶𝐶𝐶𝐶8 12

4

6
Load on BE:
𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5 𝑑𝑑𝐶𝐶𝐶𝐶𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5 𝑑𝑑𝐶𝐶𝐶𝐶

= 10

Overload-free

Volume Range [4,6]

Volume Range [8,12]

How likely 
is BE to be 

overloaded?



Probabilistic Analysis 
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Link Capacity: 10

A

B

C

D

E

F
[4,6]

[4,6]

[2,3]
𝑑𝑑𝐴𝐴𝐴𝐴

𝑑𝑑𝐶𝐶𝐶𝐶8 12

4

6
Load on BE:
𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5 𝑑𝑑𝐶𝐶𝐶𝐶𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5 𝑑𝑑𝐶𝐶𝐶𝐶

= 10

Overload-free

Volume Range [4,6]

Volume Range [8,12]

𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 0.5

How likely 
is BE to be 

overloaded?



Probabilistic Phenomenon
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The Covered Service will provide a Monthly Uptime Percentage to 
Customer of at least 99.9% (the "Service Level Objective " or "SLO")

For all RDS instances hosted in multiple Availability Zones (with the 
‘Multi AZ’ parameter set to ‘True’), Amazon guarantees 99.5%
uptime in any monthly billing cycle.

We guarantee that at least 99.9% of the time CDN will respond to 
client requests and deliver the requested content without error.
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Probabilistic Analysis of Network Availability: Pita



Pita Overview

Given the network topology, the range of traffic fluctuation, traffic 
tunnels with their splitting weights and a range of failure scenarios, 

13

Weight: 1:1

{ }

Input



Pita Overview

Pita outputs the overall probability of the network being available.
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Weight: 1:1

{ }

Input

Pita

Probability
of the network being 
free from overload 
across failures and 
traffic fluctuation.



Outline

Background and Motivation
Pita Overview
Problem Formulation
Solution
Evaluation
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Problem Formulation
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Probability
of the network being 
free from overload 
across failures and 
traffic fluctuation.

= 𝑃𝑃𝑃𝑃(𝜙𝜙𝑓𝑓) � 𝑃𝑃𝑃𝑃(𝑓𝑓)�
𝑓𝑓∈F

The probability of
network availability 



Problem Formulation

𝐹𝐹 is a set of failure scenarios concerned (input from users).
𝑓𝑓 is a failure scenario (a set of links failed).

17

𝑃𝑃𝑃𝑃(𝜙𝜙𝑓𝑓) � 𝑃𝑃𝑃𝑃(𝑓𝑓)
Probability

of the network being 
free from overload 
across failures and 
traffic fluctuation.

= �
𝑓𝑓∈F



Problem Formulation

𝐹𝐹 is a set of failure scenarios concerned (input from users).
𝑓𝑓 is a failure scenario (a set of links failed).
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𝑃𝑃𝑃𝑃(𝜙𝜙𝑓𝑓) � 𝑃𝑃𝑃𝑃(𝑓𝑓)

The probability 
that 𝑓𝑓 happens, 
e.g., 0.001

Probability
of the network being 
free from overload 
across failures and 
traffic fluctuation.

= �
𝑓𝑓∈F



Problem Formulation

Overload-free property 𝜙𝜙𝑓𝑓: the network could accommodate the 
traffic fluctuation under a scenario 𝑓𝑓 without link overloaded (other 
than the failed ones).

19

𝑃𝑃𝑃𝑃(𝜙𝜙𝑓𝑓) � 𝑃𝑃𝑃𝑃(𝑓𝑓)

Overload-free 
Probability 

Pr(𝜙𝜙𝑓𝑓)

Probability
of the network being 
free from overload 
across failures and 
traffic fluctuation.

= �
𝑓𝑓∈F



Problem Formulation

Overload-free property 𝜙𝜙𝑓𝑓: the network could accommodate the 
traffic fluctuation under a scenario 𝑓𝑓 without link overloaded (other 
than the failed ones).
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overload-free 𝜙𝜙𝑓𝑓 =

𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 10
∧ 𝑑𝑑𝐴𝐴𝐴𝐴 ≤ 10
∧ 0.5𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 10

…
A

B

C

D

E

F

Link BE: 
Link AB:

1:1

1:1

Link BC/CF/EF: Link capacity 
constraints



Problem Formulation

Overload-free probability Pr(𝜙𝜙𝑓𝑓) is the Lebesgue measure of 𝜙𝜙𝑓𝑓 in 
the whole traffic set 𝑄𝑄.
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𝑑𝑑𝐴𝐴𝐴𝐴

𝑑𝑑𝐶𝐶𝐶𝐶8 12

4

6

𝑅𝑅𝑓𝑓

𝑑𝑑𝐴𝐴𝐴𝐴 ≤ 6
∧ −𝑑𝑑𝐴𝐴𝐴𝐴 ≤ −4
∧ 𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 12
∧ −𝑑𝑑𝐶𝐶𝐶𝐶 ≤ −8

𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 10

𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5𝑑𝑑𝐶𝐶𝐶𝐶 = 10 Demand (A,E) range 
constraints

Demand (C,E) range 
constraints

𝜙𝜙𝑓𝑓
…

whole
Set 𝑄𝑄

𝑄𝑄



Problem Formulation

Overload-free probability Pr(𝜙𝜙𝑓𝑓) is the Lebesgue measure of 𝜙𝜙𝑓𝑓 in 
the whole traffic set 𝑄𝑄.
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∧ −𝑑𝑑𝐴𝐴𝐴𝐴 ≤ −4
∧ 𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 12
∧ −𝑑𝑑𝐶𝐶𝐶𝐶 ≤ −8

𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 10

𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5𝑑𝑑𝐶𝐶𝐶𝐶 = 10 Demand (A,E) range 
constraints

Demand (C,E) range 
constraints

𝜙𝜙𝑓𝑓
…

whole
Set 𝑄𝑄

∧

Rf = 𝑑𝑑𝐴𝐴𝐴𝐴 ,𝑑𝑑𝐶𝐶𝐶𝐶 𝜙𝜙𝑓𝑓 ∧ 𝑄𝑄}

Pr 𝜙𝜙𝑓𝑓 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑓𝑓)/𝑣𝑣𝑣𝑣𝑣𝑣(𝑄𝑄)

𝑄𝑄



Computing Pr(𝜙𝜙𝑓𝑓) in the Running Example

Overload-free probability Pr(𝜙𝜙𝑓𝑓) is the Lebesgue measure of 𝜙𝜙𝑓𝑓 in 
the whole traffic set 𝑄𝑄.
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𝑑𝑑𝐶𝐶𝐶𝐶8 12

4

6

𝑅𝑅𝑓𝑓

𝑑𝑑𝐴𝐴𝐴𝐴 ≤ 6
−𝑑𝑑𝐴𝐴𝐴𝐴 ≤ −4

𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 12
−𝑑𝑑𝐶𝐶𝐶𝐶 ≤ −8

𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 10

𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5𝑑𝑑𝐶𝐶𝐶𝐶 = 10 Demand (A,E) range 
constraints

Demand (C,E) range 
constraints

𝜙𝜙𝑓𝑓
…

whole
Set 𝑄𝑄Pr()

𝑄𝑄

Pr 𝜙𝜙𝑓𝑓 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑓𝑓)/𝑣𝑣𝑣𝑣𝑣𝑣(𝑄𝑄)

The area of a 
rectangle when 𝑄𝑄 
is 2-dimensional.

The area of a convex 
polygon when 𝑅𝑅𝑓𝑓 is 2-

dimensional.

How about 𝑹𝑹𝒇𝒇
and 𝑸𝑸 in higher 

dimensions? 

Rf = 𝑑𝑑𝐴𝐴𝐴𝐴 ,𝑑𝑑𝐶𝐶𝐶𝐶 𝜙𝜙𝑓𝑓 ∧ 𝑄𝑄}



Computing Pr(𝜙𝜙𝑓𝑓) = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑓𝑓)/𝑣𝑣𝑣𝑣𝑣𝑣(𝑄𝑄)

• Geometrically, the whole set Q = {(d1, … , dn)| ∧𝑖𝑖=1𝑛𝑛 𝐿𝐿𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖 ≤ 𝑈𝑈𝑖𝑖} is 
an 𝑛𝑛-dimensional hyperrectangle defined by the ranges of demands.

24

𝑑𝑑𝐴𝐴𝐴𝐴 ≤ 6
−𝑑𝑑𝐴𝐴𝐴𝐴 ≤ −4

𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 12
−𝑑𝑑𝐶𝐶𝐶𝐶 ≤ −8

Q =
∧
∧
∧

𝑛𝑛 = #demand
Regular polytope 

𝑣𝑣𝑣𝑣𝑣𝑣 𝑄𝑄 = ∏𝑖𝑖=1
𝑛𝑛 (Ui − Li)



Computing Pr(𝜙𝜙𝑓𝑓) = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑓𝑓)/𝑣𝑣𝑣𝑣𝑣𝑣(𝑄𝑄)

Geometrically, 𝑅𝑅𝑓𝑓 = {(𝑑𝑑1, … ,𝑑𝑑𝑛𝑛)|𝜙𝜙𝑓𝑓 ∧ 𝑄𝑄} is an 𝑛𝑛-dimensional polytope
enclosed by 𝑚𝑚 hyperplanes.

25

𝑑𝑑𝐴𝐴𝐴𝐴 ≤ 6
−𝑑𝑑𝐴𝐴𝐴𝐴 ≤ −4

𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 12
−𝑑𝑑𝐶𝐶𝐶𝐶 ≤ −8

𝜙𝜙𝑓𝑓 = 𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 10
𝑑𝑑𝐴𝐴𝐴𝐴 ≤ 10

0.5𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 10

…

𝑛𝑛 = #demand

Q =

#edge in the network 
− #failed link in 𝑓𝑓

2 � #demand

∧
∧
∧
∧

∧
∧

𝑅𝑅𝑓𝑓=

𝑚𝑚 = 𝑂𝑂(#edge + 2 � #demand)

E.g., at most 100 for a 
network of ten nodes

E.g., at most 220 for a 
network of ten nodes 

and twenty edges



Computing Pr(𝜙𝜙𝑓𝑓) = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑓𝑓)/𝑣𝑣𝑣𝑣𝑣𝑣(𝑄𝑄)

Geometrically, 𝑅𝑅𝑓𝑓 = {(𝑑𝑑1, … ,𝑑𝑑𝑛𝑛)|𝜙𝜙𝑓𝑓 ∧ 𝑄𝑄} is an 𝑛𝑛-dimensional polytope
enclosed by 𝑚𝑚 hyperplanes.

Irregular and high-dimensional: 
The volume could not be exactly computed when dimension is larger than 151.

Convex:
We could resort to Multiphase Markov Chain Monte Carlo (Multiphase MCMC) to 
approximate the volume.

26
1B. Bueler, A. Enge, and K. Fukuda, “Exact Volume Computation for Polytopes: A Practical Study,” in Polytopes — combinatorics and computation, 
2000, pp. 131–154

Proof see 
paper



Outline

Background and Motivation
Pita Overview
Problem Formulation
Solution
Evaluation
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Solution Takeaways

Pr(𝜙𝜙𝑓𝑓) boils down to the volume of a high-dimensional polytope 𝑅𝑅𝑓𝑓. 

The volume of 𝑅𝑅𝑓𝑓 is approximated by Multiphase MCMC:
• Constructing a series of convex bodies that volume ratios multiplication is 𝑅𝑅𝑓𝑓.
• Estimating a volume ratio by MCMC.

A domain-specific optimization on the random walk of MCMC:
• Exploiting the structural property of our problem.

There are special cases where Pr(𝜙𝜙𝑓𝑓)  could be determined (See paper).

28



Approximating 𝑷𝑷𝑷𝑷(𝝓𝝓𝒇𝒇) by Multiphase MCMC

1. Constructing a series of convex bodies that volume ratios multiplication is 𝑅𝑅𝑓𝑓.

We first construct a sequence of convex bodies 𝐾𝐾𝛼𝛼 ⊆ 𝐾𝐾𝛼𝛼+1 … ⊆ 𝐾𝐾𝛽𝛽−1 ⊆ 𝐾𝐾𝛽𝛽, where 
convex bodies {𝐾𝐾𝑖𝑖} are the intersections of 𝑅𝑅𝑓𝑓 and a series of concentric balls {𝐵𝐵𝑖𝑖}. 

29

𝑅𝑅𝑓𝑓
𝐵𝐵𝑖𝑖 ,𝛼𝛼 < 𝑖𝑖 < 𝛽𝛽



Approximating 𝑷𝑷𝑷𝑷(𝝓𝝓𝒇𝒇) by Multiphase MCMC

1. Constructing a series of convex bodies that volume ratios multiplication is 𝑅𝑅𝑓𝑓.

We first construct a sequence of convex bodies 𝐾𝐾𝛼𝛼 ⊆ 𝐾𝐾𝛼𝛼+1 … ⊆ 𝐾𝐾𝛽𝛽−1 ⊆ 𝐾𝐾𝛽𝛽, where 
convex bodies {𝐾𝐾𝑖𝑖} are the intersections of 𝑅𝑅𝑓𝑓 and a series of concentric balls {𝐵𝐵𝑖𝑖}. 

30

known volume 𝑅𝑅𝑓𝑓

𝑅𝑅𝑓𝑓
𝐵𝐵𝛼𝛼: the largest ball enclosed by 𝑅𝑅𝑓𝑓

𝐵𝐵𝑖𝑖 ,𝛼𝛼 < 𝑖𝑖 < 𝛽𝛽

𝐵𝐵𝛽𝛽: a ball enclosing 𝑅𝑅𝑓𝑓



Approximating 𝑷𝑷𝑷𝑷(𝝓𝝓𝒇𝒇) by Multiphase MCMC

1. Constructing a series of convex bodies that volume ratios multiplication is 𝑅𝑅𝑓𝑓.

Then, vol Rf is computed by 𝑣𝑣𝑣𝑣𝑣𝑣 𝐾𝐾𝛼𝛼
𝑣𝑣𝑣𝑣𝑣𝑣 𝐾𝐾𝛼𝛼+1
𝑣𝑣𝑣𝑣𝑣𝑣 𝐾𝐾𝛼𝛼

𝑣𝑣𝑣𝑣𝑣𝑣 𝐾𝐾𝛼𝛼+2
𝑣𝑣𝑣𝑣𝑣𝑣 𝐾𝐾𝛼𝛼+1

…
𝑣𝑣𝑣𝑣𝑣𝑣(𝐾𝐾𝛽𝛽)
𝑣𝑣𝑣𝑣𝑣𝑣(𝐾𝐾𝛽𝛽−1)

31

𝑅𝑅𝑓𝑓

𝑅𝑅𝑓𝑓

known volume

Each such ratio is estimated by 
MCMC (Markov Chain Monte Carlo)



Approximating 𝑷𝑷𝑷𝑷(𝝓𝝓𝒇𝒇) by Multiphase MCMC

2. Estimating a volume ratio by MCMC.

vol Rf = 𝑣𝑣𝑣𝑣𝑣𝑣 𝐾𝐾𝛼𝛼
𝑣𝑣𝑣𝑣𝑣𝑣 𝐾𝐾𝛼𝛼+1
𝑣𝑣𝑣𝑣𝑣𝑣 𝐾𝐾𝛼𝛼

𝑣𝑣𝑣𝑣𝑣𝑣 𝐾𝐾𝛼𝛼+2
𝑣𝑣𝑣𝑣𝑣𝑣 𝐾𝐾𝛼𝛼+1

…
𝑣𝑣𝑣𝑣𝑣𝑣(𝐾𝐾𝛽𝛽)
𝑣𝑣𝑣𝑣𝑣𝑣(𝐾𝐾𝛽𝛽−1)
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𝑅𝑅𝑓𝑓

Using (Markov Chain) random walk to generate many 
(almost) uniformly distributed sample points in 𝐾𝐾𝑖𝑖+1

Counting the number sample points also residing in 𝐾𝐾𝑖𝑖

The ratio 𝑣𝑣𝑣𝑣𝑣𝑣 𝐾𝐾𝑖𝑖+1
𝑣𝑣𝑣𝑣𝑣𝑣 𝐾𝐾𝑖𝑖

is estimated by #𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝐾𝐾𝑖𝑖+1
#𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝐾𝐾𝑖𝑖

We use CDHR as the random 
walk algorithm in Pita.



Random walk: CDHR

Coordinate Direction Hit-and-Run (CDHR): at each step, it samples (next) 
point by

(1) randomly picking a line 𝑙𝑙 through current point 𝑝𝑝0 who parallel to the axes and
(2) moving current point 𝑝𝑝0 to a random point 𝑝𝑝1 uniformly distributed on the 

chord Ki ∩ 𝑙𝑙
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𝑝𝑝0
𝑙𝑙

𝑅𝑅𝑓𝑓 (𝑛𝑛 = 2,𝑚𝑚 = 8)

𝑝𝑝1

𝑑𝑑1

𝑑𝑑2

𝑙𝑙𝑙

𝑝𝑝2
Boundary oracle: 

making sure a sample 
point is inside 𝐾𝐾𝑖𝑖

A bottleneck of 
random walk



A domain-specific optimization on CDHR

The original boundary oracle in CDHR computes the intersection 
points of line 𝑙𝑙 with 𝑚𝑚 hyperplanes in 𝑅𝑅𝑓𝑓.
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The complexity is O m
= 𝑂𝑂(#𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 2 � #𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

𝑑𝑑𝐴𝐴𝐴𝐴 ≤ 6
−𝑑𝑑𝐴𝐴𝐴𝐴 ≤ −4

𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 12
−𝑑𝑑𝐶𝐶𝐶𝐶 ≤ −8

𝜙𝜙𝑓𝑓 = 𝑑𝑑𝐴𝐴𝐴𝐴 + 0.5𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 10
𝑑𝑑𝐴𝐴𝐴𝐴 ≤ 10

0.5𝑑𝑑𝐶𝐶𝐶𝐶 ≤ 10

…

Q =∧
∧
∧
∧

∧
∧

𝑅𝑅𝑓𝑓=

𝑚𝑚 hyperplanes

2 � #𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 hyper-
planes parallel to the axes 
(the direction of walking)



A domain-specific optimization on CDHR

The original boundary oracle in CDHR computes the intersection 
points of line 𝑙𝑙 with 𝑚𝑚 hyperplanes in 𝑅𝑅𝑓𝑓.

OptHR safely bypasses hyperplanes parallel to the axes.
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The complexity is 𝑂𝑂 #𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒Proof see 
paper

The complexity is O m
= 𝑂𝑂(#𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 2 � #𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

OptHR bypasses checking whether 𝑝𝑝𝑝 steps 
outside the boundary defined by ℎ1 and ℎ2



Outline

Background and Motivation
Pita Overview
Problem Formulation
Solution
Evaluation
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Evaluation Setting

Real Topologies:
• GridNet, Abilene and ANS (from The Internet Topology Zoo)
• B4 [Jain et al.]

Number of demands: 81~300+

Synthetic Traffic Matrices:
• Gravity Model

Failure model:
• Each link in the network fails independently at the probability of 0.001
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Evaluation

A network’s Pr(𝜙𝜙𝑓𝑓) upon each single link’s failure ( 𝑓𝑓 = 1).

38

A definitely severe 
failure scenario

A failure scenario 
that is not imperative

Pr(𝜙𝜙𝑓𝑓)

Pita quantifies the risk degrees of failure scenarios 
instead of only determining whether there could be a risk.



Evaluation

Network overall availability under a set of failure scenarios.
𝑘𝑘 ≤ 1: 𝐹𝐹 includes all scenarios of at most 1 link failed.
𝑘𝑘 ≤ 2: 𝐹𝐹 includes all scenarios of at most 2 link failed.
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Evaluation

Pita’s Running Time

40

OptHR reduces up to 55% running time 
compared with SOTA random walk. 

A few minutes for networks 
with ~100 demands



Summary

Pita: a probabilistic analysis framework for network availability.

The problem of computing the availability is #P-hard. But the convexity of 
the problem makes it possible to be approximated by Multiphase MCMC.

A domain-specific optimization could make the SOTA random walk 
algorithm faster, which is theoretically proved and empirically validated.

Pita could probabilistically profile a network’s availability with quantifying 
the overload-free probability for each failure scenario.

41

Proof see 
paper



Thanks

yunmo.zhang@my.cityu.edu.hk 42
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