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[ Prior Network Verification

HSA!, Batfish?, Minesweeper3, ...

—X—0

Reachability

Is E reachable from A?

1Kazemian et al., “Header Space Analysis: Static Checking for Networks,” in Proc. USENIX NSDI, 2012.
2Fogel et al, “A General Approach to Network Configuration Analysis,” in Proc. USENIX NSDI, 2015
3Beckett et al,, “A General Approach to Network Configuration Verification,” in Proc. ACM SIGCOMM, 2017



il Prior Network Verification

HSA!, Batfish?, Minesweeper3, ...

Are there other
properties?

o . Reachability ‘

V For path-related (qualitative) properties
vV Answering a deterministic question

1Kazemian et al., “Header Space Analysis: Static Checking for Networks,” in Proc. USENIX NSDI, 2012.
2Fogel et al, “A General Approach to Network Configuration Analysis,” in Proc. USENIX NSDI, 2015
3Beckett et al,, “A General Approach to Network Configuration Verification,” in Proc. ACM SIGCOMM, 2017



il Prior Network Verification

QARC!, Chang et al>.

original traffic
ﬁ

redirected traffic

---->

Is network free from
overload?

1Subramanian et al., Detecting Network Load Violations for Distributed Control Planes,” in Proc. ACM PLDI, 2020
2Chang et al., “Robust Validation of Network Designs under Uncertain Demands and Failures,” in Proc. USENIX NSDI, 2017



il Prior Network Verification

QARC!, Chang et al>.

V For a traffic-related (quantitative) property
vV Answering a deterministic question

insufficient

1Subramanian et al., Detecting Network Load Violations for Distributed Control Planes,” in Proc. ACM PLDI, 2020
2Chang et al., “Robust Validation of Network Designs under Uncertain Demands and Failures,” in Proc. USENIX NSDI, 2017



B A Running Example

Link Capacity: 10

splitting weights: 1: 1 2,3
Demand (A,E) traffic volume 23]

fluctuation) range: [4,6]
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Straffic matrix element
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splitting weights: 1: 1[4’6]

IMatthew Roughan, Robust Network Planning (also the image source)



[l A Running Example

After failure... Link Capacity: 10

likely
is BE to be

Load on BE:
(05 + 05) dAE + 0.5 dCE If dAE = 6 and dCE =12

) \/0lume Range [4,6]
s \/OlUMe Range [8,12]




[l A Running Example

After failure... Link Capacity: 10

likely
is BE to be

Load on BE:
(0.54+0.5)dys + 0.5d¢ fd,s = 6and deg = 12

) \/0lume Range [4,6]

s \/OlUMe Range [8,12]

Simple yes or no answers could not profile the network availability comprehensively.

Probabilistic analysis naturally fits here.




Jl Probabilistic Analysis

Link Capacity: 10

likely
is BE to be

Load on BE: :
d/ﬂ; -+ 0.5 (,IJ—.CE ------------------- o \-\*L _______________
_____________________ I N
) \/0lume Range [4,6]
s \/OlUMe Range [8,12] 12 dcg

| SR

Overload-free



Jl Probabilistic Analysis

Link Capacity: 10

likely
is BE to be

Load on BE:

) \/0lume Range [4,6]
s \/OlUMe Range [8,12]
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. Probabilistic Phenomenon

For all RDS instances hosted in multiple Availability Zones (with the
‘Multi AZ’ parameter set to ‘True’), Amazon guarantees 99.5%
uptime in any monthly billing cycle.

The Covered Service will provide a Monthly Uptime Percentage to
Customer of at least 99.9% (the "Service Level Objective " or "SLO")

We guarantee that at least 99.9% of the time CDN will respond to
client requests and deliver the requested content without error.

dWs$s

\—;’7

Google Cloud

BB Microsoft
B Azure
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Probabilistic Analysis of Network Availability: Pita



J Pita Overview

Given the network topology, the range of traffic fluctuation, traffic
tunnels with their splitting weights and a range of failure scenarios,
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J Pita Overview

Pita outputs the overall probability of the network being available.

Input

Probability

of the network being

O

Ty W free from overload

1%!03 0g/08 0613 %631?3 06.;23 06/28  07/03 Pita aCI’OSS fallures and

traffic fluctuation.
/ Weight: 1:1 }‘
&Y
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< P>
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Outline

Problem Formulation
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J Problem Formulation

The probability of
network availability

Probability
of the network being _
free from overload — z Pr(¢f) N Pr (f)
across failures and fEF

traffic fluctuation.
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] Problem Formulation

F is a set of failure scenarios concerned (input from users).
f is a failure scenario (a set of links failed).

Probability

of the network being —
free from overload — Z Pr(¢f) « (f)
across failures and fEF

traffic fluctuation.
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] Problem Formulation

F is a set of failure scenarios concerned (input from users).

f is a failure scenario (a set of links failed).

Probability

of the network being
free from overload Pr(¢f) Pr (f)
across failures and fEF

traffic fluctuation.

The probability

that f happens,

e.g., 0.001
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J Problem Formulation

Overload-free property ¢¢: the network could accommodate the

traffic fluctuation under a scenario [ without link overloaded (other
than the failed ones).

<,
> . |

fEF

Overload-free
Probability

Pr(¢r)
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J Problem Formulation

Overload-free property ¢¢: the network could accommodate the
traffic fluctuation under a scenario [ without link overloaded (other

than the failed ones).

overload-free ¢ =

Link BE: dAE + OSdCE S 10
Link AB:  Adyg <10 Link it
. ink capacity
: . = B
Link BC/CF/EF A 0 SdCE =10 constraints
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J Problem Formulation

Overload-free probability Pr(¢y) is the Lebesgue measure of ¢ in

the whole traffic set (.

dAE

A

dug <6
A—dyg < —4

dyp + 0.5dg < 10

Demand (A,E) range
constraints

Demand (C,E) range
constraints

br

_whole
Set Q
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B Problem Formulation

Overload-free probability Pr(¢y) is the Lebesgue measure of ¢ in
the whole traffic set Q.

dAE

3 SN S Re={(dag. dcE) | 95 A Q}
T - Pr(¢s) = vol(Ry)/vol(Q)




] Computing Pr(¢;) in the Running Example

Overload-free probability Pr(¢y) is the Lebesgue measure of ¢ in

the whole traffic set Q. How about R,

and Q in higher
dimensions?

daz
dAE + OSdCE |= 10 :

6 hamasmccnoons 11\-\-'|\\ - Rf = {(dAE» deg) | ¢f A Q}

4 p .l_ - _\\§;'\'\'\'\'\
A Pr(¢s) = vol(Rs)/vol(Q)
| L, £
8 12 dep The area of a convex | The area of a
R polygon when Ry is Z-J rectangle when Q J
sl dimensional. is 2-dimensional.

Q Ry f




Jl Computing Pr(¢,) = vol(R;)/vol(Q)

» Geometrically, the whole set Q = {(d4, ...,dy)| Ajz; L; < d; < U;}is
an n-dimensional hyperrectangle defined by the ranges of demands.

Regular polytope

n = #demand
A

[

Q= dAE | <6
N—dyf <-4
A degp < 12
AN _dCE < -8

vol(Q) = ?:1 (Ui — L
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Bl Computing Pr(¢;) = vol(R;)/vol(0)

Geometrically, Ry = {(d4, ..., d;,)|¢s A @} is an n-dimensional polytope
enclosed by m hyperplanes.

E.g., at most 100 for a
n = #demand network of ten nodes

Rf:f ( : \ —
_ N dup <10
t#tedge in the network | A 05d~ < 10
— #failed link in f TR =
i — m=0(#edge + 2 - #demand)
A Q — dAE <6
A—d < —4 E.g., at most 220 for a
2 - #demand = A deg < 12 network of ten nodes
A\ —dy < _3 and twenty edges
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Bl Computing Pr(;) = vol(Ry)/vol(0)

Geometrically, Ry = {(d4, ..., d;,)|¢s A @} is an n-dimensional polytope
enclosed by m hyperplanes.

»Irregular and high-dimensional:

The volume could not be exactly computed when dimension is larger than 152,

Proof see
paper
» Convex:

We could resort to Multiphase Markov Chain Monte Carlo (Multiphase MCMC) to
approximate the volume.

1B. Bueler, A. Enge, and K. Fukuda, “Exact Volume Computation for Polytopes: A Practical Study,” in Polytopes — combinatorics and computation, 26
2000, pp. 131-154



Background and Motivation
Pita Overview

Problem Formulation
Solution

Evaluation
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[l Solution Takeaways

The volume of R is approximated by Multiphase MCMC:

* Constructing a series of convex bodies that volume ratios multiplication is Ry.
e Estimating a volume ratio by MCMC.

A domain-specific optimization on the random walk of MCMC:
e Exploiting the structural property of our problem.

28



B Approximating Pr(¢) by Multiphase MCMC

1. Constructing a series of convex bodies that volume ratios multiplication is 1.

We first construct a sequence of convex bodies K, € Ky4q ... © Kg_1 S Kp, where
convex bodies {K;} are the intersections of R and a series of concentric balls {B;}.

29



B Approximating Pr(¢) by Multiphase MCMC

1. Constructing a series of convex bodies tha knownvolume s multiplicationis /Ry

We first construct a sequence of convex bodies K, € Ky4q ... © Kg_1 S Kp, where
convex bodies {K;} are the intersections of R and a series of concentric balls {B;}.

Bi,a <I < ﬁ
B, the largest ball enclosed by R¢
Bg: a ball enclosing Ry
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B Approximating Pr(¢) by Multiphase MCMC

1. Constructing a series of convex bodies that volume ratios multiplication is Ry

v0l(Kg41)| v0l(Kg42) vol(Kg)

Then, vol(R¢) is computed by vol(K,) vol(Kqg) [vol(Kg+1) — vOl(Kp—1)

Ry

known volume

Each such ratio is estimated by

MCMC (Markov Chain Monte Carlo)




B Approximating Pr(¢) by Multiphase MCMC

2. Estimating a volume ratio by MCMC.

vol(R¢) = vol(K,)

Vol(Kgq1)|[vol(Kp42) vol(Kpg)

vol(Kg) [vol(Kg41) — vOL(Kp_q) We use CDHR as the random

walk algorithm in Pita.

@ing (Markov Chain) random walk to generate many
(almost) uniformly distributed sample points in K; ;

Counting the number sample points also residing in K;

. Vol(K; . . #tsample voints in K;
The ratio 22211 i o ctimated by pep e

k vol(K;) #sample points in Ky
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J Random walk: CDHR

Coordinate Direction Hit-and-Run (CDHR): at each step, it samples (next)
point by

(1) randomly picking a line [ through current point py who parallel to the axes and

(2) moving current point py to a random point p; uniformly distributed on the

chord K; N { A bottleneck of
random walk

Boundary oracle:
making sure a sample
point is inside K;

d, 33



B A domain-specific optimization on CDHR

The original boundary oracle in CDHR computes the intersection
points of line [ with m hyperplanes in R¢.

The complexity is O(m)

= O(#edge + 2 - #demand)

Rf: -y
A dyg <10
A 0.5dq5 < 10
— m hyperplanes
AQ = =
2 - #demand hyper- ' /O /\_ZAE > i )
planes parallel to the axes AE =
(the direction of walking) A dep < 12
: A —dcg < —8

34



l A domain-specific optimization on CDHR

The original boundary oracle in CDHR computes the intersection
points of line [ with m hyperplanes in R¢.

The complexity is O(m)

= O(#edge + 2 - #demand)

OptHR safely bypasses hyperplanes parallel to the axes.

The complexity is O (#edge)

Proof see
paper




Background and Motivation
Pita Overview

Problem Formulation
Solution

Evaluation
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ll Evaluation Setting

Real Topologies:
e GridNet, Abilene and ANS (from The Internet Topology Zoo)
e B4 [Jain et al.]

Number of demands: 81~300+

Synthetic Traffic Matrices:
e Gravity Model

Failure model:
e Each link in the network fails independently at the probability of 0.001

37



J Evaluation

A network’s Pr(¢s) upon each single link’s failure (|| = 1).

E4

7 11 12 [T°

0.8

0.6

A failure scenario Pr(cl)f)
that is not imperative 0.4

0.2
8 10 9
0.0

A definitely severe

failure scenario

Pita quantifies the risk degrees of failure scenarios
instead of only determining whether there could be a risk.
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[l Evaluation

Network overall availability under a set of failure scenarios.

k < 1: F includes all scenarios of at most 1 link failed.

k < 2: F includes all scenarios of at most 2 link failed.

Network KSP MaxFlow MinLatency
' E<1 k<2 E<1 E<2 E<1 k<2
GridNet 99.833% | 99.830% | 99.786% | 99.782%" 100% 100%
Abilene 99.900% | 99.900% 100% 99.999% 100% 99.997 %
B4 99.567% | 99.561% | 99.552% | 99.548% 100% 99.996%
ANS 99.805% | 99.800% | 99.609% | 99.601% | 99.805% | 99.802%
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J Evaluation

Pita’s Running Time

5001 ra conr ? 1D4: —— AttMpls
I OptHR ] = AnS
400 1= B4
1 —e— abilena
300 1 3 | —— Grid
—10- 4
—_ @ 3
E2004 “= L s ]
E - o 4 g , i
= 20- ? 10%;
10+ / 101 _ %
0 L= 7 % 100 200 300
Grid Abilene B4 ANS

# of dynamic demands

OptHR reduces up to 55% running time A few minutes for networks

compared with SOTA random walk. with ~100 demands




. Summary

Pita: a probabilistic analysis framework for network gvafilability.
roor see

paper

The problem of computing the availability is #P-hard. But the convexity of
the problem makes it possible to be approximated by Multiphase MCMC.

A domain-specific optimization could make the SOTA random walk
algorithm faster, which is theoretically proved and empirically validated.

Pita could probabilistically profile a network’s availability with quantifying
the overload-free probability for each failure scenario.
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