Probabilistic Analysis of Network Availability

Yunmo Zhang¹, Hong Xu², Chun Jason Xue¹, Tei-Wei Kuo¹

¹City University of Hong Kong ²Chinese University of Hong Kong

IEEE ICNP 2022

HSA¹, Batfish², Minesweeper³, ...

¹Kazemian et al., "Header Space Analysis: Static Checking for Networks," in Proc. USENIX NSDI, 2012.
 ²Fogel et al, "A General Approach to Network Configuration Analysis," in Proc. USENIX NSDI, 2015
 ³Beckett et al,, "A General Approach to Network Configuration Verification," in Proc. ACM SIGCOMM, 2017

¹Kazemian et al., "Header Space Analysis: Static Checking for Networks," in Proc. USENIX NSDI, 2012.
 ²Fogel et al, "A General Approach to Network Configuration Analysis," in Proc. USENIX NSDI, 2015
 ³Beckett et al,, "A General Approach to Network Configuration Verification," in Proc. ACM SIGCOMM, 2017

¹Subramanian et al., Detecting Network Load Violations for Distributed Control Planes," in Proc. ACM PLDI, 2020 ²Chang et al., "Robust Validation of Network Designs under Uncertain Demands and Failures," in Proc. USENIX NSDI, 2017

QARC¹, Chang *et al*².

¹Subramanian et al., Detecting Network Load Violations for Distributed Control Planes," in Proc. ACM PLDI, 2020 ²Chang et al., "Robust Validation of Network Designs under Uncertain Demands and Failures," in Proc. USENIX NSDI, 2017

A Running Example

A Running Example

A Running Example

Simple yes or no answers could not profile the network availability comprehensively.

Probabilistic analysis naturally fits here.

Probabilistic Analysis

Probabilistic Analysis

Probabilistic Phenomenon

For all RDS instances hosted in multiple Availability Zones (with the 'Multi AZ' parameter set to 'True'), Amazon guarantees **99.5%** uptime in any monthly billing cycle.

The Covered Service will provide a Monthly Uptime Percentage to Customer of at least **99.9%** (the "Service Level Objective " or "SLO")

We guarantee that at least **99.9%** of the time CDN will respond to client requests and deliver the requested content without error.

Probabilistic Analysis of Network Availability: Pita

Pita Overview

Given the network topology, the range of traffic fluctuation, traffic tunnels with their splitting weights and a range of failure scenarios,

Pita outputs the overall probability of the network being available.

Background and Motivation Pita Overview

Problem Formulation

Solution

Evaluation

The probability of network availability

Probability of the network being free from overload across failures and traffic fluctuation.

$$= \sum_{f \in \mathbf{F}} Pr(\phi_f) \cdot Pr(f)$$

F is a set of failure scenarios concerned (input from users). *f* is a failure scenario (a set of links failed).

F is a set of failure scenarios concerned (input from users).f is a failure scenario (a set of links failed).

The probability that *f* happens, e.g., 0.001

Overload-free property ϕ_f : the network could accommodate the traffic fluctuation under a scenario f without link overloaded (other than the failed ones).

Overload-free property ϕ_f : the network could accommodate the traffic fluctuation under a scenario f without link overloaded (other than the failed ones).

Overload-free probability $Pr(\phi_f)$ is the Lebesgue measure of ϕ_f in the whole traffic set Q.

Overload-free probability $Pr(\phi_f)$ is the Lebesgue measure of ϕ_f in the whole traffic set Q.

Computing $\Pr(\phi_f)$ in the Running Example

Overload-free probability $Pr(\phi_f)$ is the Lebesgue measure of ϕ_f in the whole traffic set Q. How about R_f

Computing $Pr(\phi_f) = vol(R_f)/vol(Q)$

Regular polytope

• Geometrically, the whole set $Q = \{(d_1, ..., d_n) | \wedge_{i=1}^n L_i \le d_i \le U_i\}$ is an *n*-dimensional hyperrectangle defined by the ranges of demands.

n = #demand $Q = d_{AE} \leq 6$ $\wedge - d_{AE} \leq -4$ $\wedge \quad d_{CE} \leq 12$ $\wedge \quad - d_{CE} \leq -8$

$$vol(Q) = \prod_{i=1}^{n} (U_i - L_i)$$

Computing $Pr(\phi_f) = vol(R_f)/vol(Q)$

Geometrically, $R_f = \{(d_1, ..., d_n) | \phi_f \land Q\}$ is an *n*-dimensional polytope enclosed by *m* hyperplanes. E.g., at most 100 for a network of ten nodes n =#demand $R_f =$ $\phi_f = d_{AE} + 0.5 d_{CE} \le 10^{-1}$ $\wedge d_{AE} \leq 10$ #edge in the network $\wedge \qquad 0.5d_{CE} \le 10$ - #failed link in f $m = O(\text{#edge} + 2 \cdot \text{#demand})$ $\wedge Q = d_{AE}$ ≤ 6 ≤ -4 E.g., at most 220 for a $\wedge -d_{AE}$ $2 \cdot \#$ demand $\begin{array}{ll} \wedge & d_{CE} \leq 12 \\ \wedge & -d_{CE} \leq -8 \end{array}$ network of ten nodes and twenty edges

Computing $Pr(\phi_f) = vol(R_f)/vol(Q)$

Geometrically, $R_f = \{(d_1, ..., d_n) | \phi_f \land Q\}$ is an *n*-dimensional polytope enclosed by *m* hyperplanes.

➢Irregular and high-dimensional:

The volume could not be exactly computed when dimension is larger than 15¹.

Proof see paper
Convex:

We could resort to Multiphase Markov Chain Monte Carlo (Multiphase MCMC) to approximate the volume.

Background and Motivation Pita Overview Problem Formulation Solution

Evaluation

Solution Takeaways

 $Pr(\phi_f)$ boils down to the volume of a high-dimensional polytope R_f .

The volume of R_f is approximated by Multiphase MCMC:

- Constructing a series of convex bodies that volume ratios multiplication is R_f .
- Estimating a volume ratio by MCMC.

A domain-specific optimization on the random walk of MCMC:

• Exploiting the structural property of our problem.

There are special cases where $Pr(\phi_f)$ could be determined (See paper).

1. Constructing a series of convex bodies that volume ratios multiplication is R_f .

We first construct a sequence of convex bodies $K_{\alpha} \subseteq K_{\alpha+1} \dots \subseteq K_{\beta-1} \subseteq K_{\beta}$, where convex bodies $\{K_i\}$ are the intersections of R_f and a series of concentric balls $\{B_i\}$.

1. Constructing a series of convex bodies tha known volume is multiplication is $I = R_f$

We first construct a sequence of convex bodies $K_{\alpha} \subseteq K_{\alpha+1} \dots \subseteq K_{\beta-1} \subseteq K_{\beta}$, where convex bodies $\{K_i\}$ are the intersections of R_f and a series of concentric balls $\{B_i\}$.

 $B_i, \alpha < i < \beta$ B_{α} : the largest ball enclosed by R_f B_{β} : a ball enclosing R_f

1. Constructing a series of convex bodies that volume ratios multiplication is R_f .

2. Estimating a volume ratio by MCMC.

 $\operatorname{vol}(R_{f}) = \operatorname{vol}(K_{\alpha}) \frac{\operatorname{vol}(K_{\alpha+1})}{\operatorname{vol}(K_{\alpha})} \frac{\operatorname{vol}(K_{\alpha+2})}{\operatorname{vol}(K_{\alpha+1})} \dots \frac{\operatorname{vol}(K_{\beta})}{\operatorname{vol}(K_{\beta-1})}$

We use CDHR as the random walk algorithm in Pita.

Using (Markov Chain) random walk to generate many (almost) uniformly distributed sample points in K_{i+1}

Counting the number sample points also residing in K_i

The ratio $\frac{vol(K_{i+1})}{vol(K_i)}$ is estimated by $\frac{\#sample \ points \ in \ K_{i+1}}{\#sample \ points \ in \ K_i}$

Random walk: CDHR

Coordinate Direction Hit-and-Run (CDHR): at each step, it samples (next) point by

(1) randomly picking a line l through current point p_0 who parallel to the axes and

(2) moving current point p_0 to a random point p_1 uniformly distributed on the chord $K_i \cap l$

A domain-specific optimization on CDHR

The original boundary oracle in CDHR computes the intersection points of line *l* with *m* hyperplanes in R_f . The complexity is O(m)

A domain-specific optimization on CDHR

The original boundary oracle in CDHR computes the intersection points of line l with m hyperplanes in R_f .

The complexity is O(m)= $O(\#edge + 2 \cdot \#demand)$

OptHR safely bypasses hyperplanes parallel to the axes.

Proof see paper

The complexity is O(#edge)

OptHR bypasses checking whether p' steps outside the boundary defined by h_1 and h_2

Background and Motivation Pita Overview Problem Formulation Solution

Evaluation

Evaluation Setting

Real Topologies:

- GridNet, Abilene and ANS (from The Internet Topology Zoo)
- B4 [Jain et al.]

Number of demands: 81~300+

Synthetic Traffic Matrices:

• Gravity Model

Failure model:

• Each link in the network fails independently at the probability of 0.001

Evaluation

A network's $Pr(\phi_f)$ upon each single link's failure (|f| = 1).

Pita quantifies the risk degrees of failure scenarios instead of only determining whether there could be a risk.

Network overall availability under a set of failure scenarios.

- $k \leq 1$: F includes all scenarios of at most 1 link failed.
- $k \leq 2$: F includes all scenarios of at most 2 link failed.

Network	KSP		MaxFlow		MinLatency	
	$k \leq 1$	$k \leq 2$	$k \leq 1$	$k \leq 2$	$k \leq 1$	$k \leq 2$
GridNet	99.833%	99.830%	99.786%	99.782%'	100%	100%
Abilene	99.900%	99.900%	100%	99.999%	100%	99.997%
B4	99.567%	99.561%	99.552%	99.548%	100%	99.996%
ANS	99.805%	99.800%	99.609%	99.601%	99.805%	99.802%

Pita's Running Time

OptHR reduces up to **55%** running time compared with SOTA random walk.

40

Pita: a probabilistic analysis framework for network availability. Proof see paper

The problem of computing the availability is #P-hard. But the convexity of the problem makes it possible to be approximated by Multiphase MCMC.

A domain-specific optimization could make the SOTA random walk algorithm faster, which is theoretically proved and empirically validated.

Pita could probabilistically profile a network's availability with quantifying the overload-free probability for each failure scenario.

Thanks

yunmo.zhang@my.cityu.edu.hk